
Dynamic Programming II:
Edit Distance & LIS



Admin
• DP HW goes out today


• Four problems, but one is solved for you


• Use it as a template

• Faculty lecture series talk this afternoon in Wege


• Charlie Doret, Physics


• Winter Study Question



Today’s Outline
We’ll explore dynamic programming problems that use different 
memoization structures, getting as far as we can.


• Edit distance

• Classic problem with many applications


• Requires a 2D memoization structure


• Longest Increasing Subsequence

• More DP practice (slightly easier, OK if we don’t get to it)


The problems themselves aren’t what is important, it’s getting 
practice with the techniques!



Edit Distance

Further Reading:  Chapter 3.7, Erickson

https://jeffe.cs.illinois.edu/teaching/algorithms/book/03-dynprog.pdf


Motivation
Edit distance is a metric that captures the similarity between 
two strings.


• Edit distance has several important applications!

DNA sequencing:  finding similarities between two genome sequences



Motivation

Text processing:  finding similar strings and NLP

Edit distance is a metric that captures the similarity between 
two strings.


• Edit distance has several important applications!



Problem Defintion
Problem.  Given two strings  and 

, find the edit distance between them.


• Edit distance between  and  is the smallest number of the 
following operations that are needed to transform  into 


• Replace a character (substitution)


• Delete a character


• Insert a character 

A = a1 ⋅ a2 ⋅ ⋅ ⋅ an
B = b1 ⋅ b2 ⋅ ⋅ ⋅ bm

A B
A B

ridle  riddle  triple  riple  
delete(d) substitute(d p)→ insert(t)

Edit distance(riddle, triple): 3



Structure of the Problem
Problem.  Given two strings  and 

, find the edit distance between them.


• Notice that the process of getting from string  to string  by 
doing substitutions, inserts and deletes is reversible


• Inserts in one string correspond to deletes in another

A = a1 ⋅ a2 ⋅ ⋅ ⋅ an
B = b1 ⋅ b2 ⋅ ⋅ ⋅ bm

A B

riddle  ridle  riple  triple  

Edit distance(riddle, triple): 3

riddle  ridle  riple  triple  
delete(d) substitute(d p)→ insert(t)

insert(d) substitute(p d)→ delete(t)



Sequence Alignment
We can visualize the problem of finding the edit distance as an 
the problem of finding the best alignment between two strings


• Gaps in alignment represent inserts to top/deletes to bottom


• Mismatches in alignment represent substitutes


• Cost of an alignment = number of gaps + mismatches

• Edit distance:  minimum cost alignment

r  i  d  d  l  e  

 t  r  i  p  l  e
cost = 7

r  i  d  d  l  e  

 t  r  i      p  l  e
cost = 3



Sequence Alignment
We can visualize the problem of finding the edit distance as an 
the problem of finding the best alignment between two strings


• Gaps in alignment represent inserts to top/deletes to bottom


• Mismatches in alignment represent substitutes


• Cost of an alignment = number of gaps + mismatches

• Edit distance:  minimum cost alignment

principle

prinncipal

misspell

mispell

prehistoric

historic

aabbccaabb

ababbbcab

algorithm

alkhwarizmi



https://www.cs.cmu.edu/~ckingsf/class/02713-s13

Sequence Alignment



Sequence Alignment



Sequence Alignment Problem
Problem: Find an alignment of the two strings  where 


• each character  in  is matched to a string  in  or 
unmatched


• each character  in  is matched to a string  in  or 
unmatched


• Matches are free if successful:  cost( )   if  , 
but penalized if unsuccessful:   cost( )   if  


• cost of an unmatched letter (gap) 


•
Total alignment cost = 


• Goal.  Compute edit distance by finding an alignment of the 
minimum total cost 

A, B
ai A bj B

bj B ai A

ai, bj = 0 ai = bj
ai, bj = 1 ai ≠ bj

= 1

# unmatched (gaps)  + ∑
ai,bj

cost(ai, bj)



Recursive Structure
Before we develop a dynamic program, we need to figure out the 
recursive structure of the problem


• Our alignment representation has an optimal substructure:


• Suppose we have the mismatch/gap representation of the 
shortest edit sequence of two strings 


• If we remove the last column, the remaining columns must 
represent the shortest edit sequence of the remaining prefixes! 



Subproblem
• Subproblem  
 
 
 
 
 

• Final answer

:  edit distance between  
the strings  and ,  

where  and 

Edit(i, j)
a1 ⋅ a2 ⋅ ⋅ ⋅ ai b1 ⋅ b2 ⋅ ⋅ ⋅ bj

0 ≤ i ≤ n 0 ≤ j ≤ m

Edit(n, m)



Base Cases
We have to fill out a two-dimensional array to memoize our 
recursive dynamic program.


• Which rows/columns can we fill immediately?


• :   Min number of edits to transform a string of 
length  to an empty string
Edit(i,0)

i

  for 


Edit   for 

Edit(i, 0) = i 0 ≤ i ≤ n

(0, j) = j 0 ≤ j ≤ m



Recurrence
Imagine the optimal alignment between the two strings 


• What are the possibilities for the last column?


• It could be that both letters match: cost 


• It could be that both letters do not match: cost 


• It could be that there an unmatched character (gap):  
either from  or from :  cost 

0

1

A B 1



Recurrence
Break the possibilities down for the last column in the 
optimal alignment of  and :  


• Case 1.  Only one row has a character:


• Case 1a.  Letter  is unmatched 



• Case 1b.  Letter  is unmatched 



• Case 2: Both rows have characters:


• Case 2a.  Same characters: 
 


• Case 2b.  Different characters: 

a1 ⋅ a2 ⋅ ⋅ ⋅ ai b1 ⋅ b2 ⋅ ⋅ ⋅ bj

ai
Edit(i, j) = Edit(i − 1,j) + 1

bj
Edit(i, j) = Edit(i, j − 1) + 1

Edit(i, j) = Edit(i − 1, j − 1)

Edit(i, j) = Edit(i − 1, j − 1) + 1



Final Recurrence
For  and , we have:1 ≤ i ≤ n 1 ≤ j ≤ m

Uses the shorthand:  which is 1 if it is true 
(i.e., they mismatch), and zero otherwise.


This just lets us write cases 2a and 2b in one line… 

(ai ≠ bj)



From Recurrence to DP
• We can now transform our recurrence into a dynamic program 


• Memoization Structure: We can memoize all possible values of 
 in a table/ two-dimensional array of size :


• Store  in a 2D array;   and 


• Evaluation order:


• Is interesting for a 2D problem


• Based on dependencies between subproblems


• We want all referenced values from our recurrence to be 
computed before we need them

Edit(i, j) O(nm)

Edit[i, j] 0 ≤ i ≤ n 0 ≤ j ≤ m



From Recurrence to DP
Evaluation order

• We can fill in row major order, which is row by row, from top down, 
each row from left to right


• With this order, when we reach an entry in the table, our 
recurrence references only filled-in entries 



Space and Time
• The memoization uses  space


• We can compute each in  time


• Overall running time: 

O(nm)
Edit[i, j] O(1)

O(nm)



Memoization Table:  Example
• Memoization table for ALGORITHM and ALTRUISTIC


• Bold numbers indicate where characters are same


• Horizontal arrow: deletion in 


• Vertical arrow (↓): insertion in 


• Diagonal (↘): (mis)match


• Bold red (↘): free match


• Only draw an arrow if used in DP


• Any directed path of arrows  
from top left to bottom right  
represents an optimal  
edit distance sequence

A
A



Reconstructing the Edits
• We don’t need to store the arrow!


• An arrow can be reconstructed on the 
fly in  time using the numerical 
values


• Once the table is built, we can 
construct the shortest edit 
distance sequence in  time


• Does this remind you of any other 
dynamic programs we’ve seen?

O(1)

O(n + m)



Longest Increasing 
Subsequence

Further Reading:  Chapter 3.7, Erickson

https://jeffe.cs.illinois.edu/teaching/algorithms/book/03-dynprog.pdf


Longest Increasing Subsequence
Problem: Given a sequence of integers as an array , find the 
longest subsequence whose elements are in increasing order 
 
 
 
 
 
 
 
 
 

(Stated more formally…) Find the longest possible sequence of indices 
 such that 

A[1,…n]

1 ≤ i1 < i2 < … < iℓ ≤ n A[ik] < A[ik+1]

1  2  10  3  7  6  4  8  11Longest Increasing 
Subsequence: length 6

1  2  10  3  7  6  4  8  11
An increasing 

subsequence with 
length 4

To simplify, we will only compute length of the LIS



Formalize the Subproblem

: length of the longest increasing subsequence 
in  that ends at (and includes)  
L[i]

A[1,…, i] A[i]



Identify the Base Case

: length of the longest increasing subsequence 
in  that ends at (and includes)  
L[i]

A A[i]

Base Case.   L[1] = ?



Identify the Final Answer

Base Case.   L[1] = 1

: length of the longest increasing subsequence 
in  that ends at (and includes)  
L[i]

A A[i]

Final answer.  ?



Base Case & Final Answer

Base Case.   L[1] = 1

: length of the longest increasing subsequence 
in  that ends at (and includes)  
L[i]

A A[i]

Final answer.   max
1≤i≤n

L[i]



Recurrence
How do we go from one subproblem to the next?


• That is, how do we compute  assuming I know the values of L[i]
L[1], …, L[i − 1]

1  2  10  3  7  6  4  8  11

Length of the LIS 
ending at 2?

Length of the LIS 
ending at 10?



Recurrence
• Let’s say we know the length of the longest subsequence 

ending at 


• What is the longest subsequence ending at ? Either:


•  could potentially extend an earlier subsequence:


• Can extend a longest subsequence ending at some , with 
, but which 


• We could try all  to get the answer


• Or  could start a new subsequence (i.e., it doesn’t 
extend any earlier increasing subsequence)

A[1], A[2], …A[i − 1]

A[i]

A[i]
A[k]

A[k] < A[i] k?

k

A[i]



Example: Building a Recurrence

1    2    10    3    7    6     4     8   11A

L 1

: length of the longest increasing subsequence in 
 that ends at (and includes)  

L[i]
A A[i]



Example: Building a Recurrence

1    2    10    3    7    6     4     8   11A

L 1 2

: length of the longest increasing subsequence in 
 that ends at (and includes)  

L[i]
A A[i]



Example: Building a Recurrence

1    2    10    3    7    6     4     8   11A

L 1 2

: length of the longest increasing subsequence in 
 that ends at (and includes)  

L[i]
A A[i]

3



Example: Building a Recurrence

1    2    10    3    7    6     4     8   11A

L 1 2 3

: length of the longest increasing subsequence in 
 that ends at (and includes)  

L[i]
A A[i]

3

How do we know  
extends a past LIS?

3



Example: Building a Recurrence

1    2    10    3    7    6     4     8   11A

L 1 2 3

: length of the longest increasing subsequence in 
 that ends at (and includes)  

L[i]
A A[i]

3

 extends an LIS ending 
at  if 

L[ j]
L[i] A[ j] > A[i]



Example: Building a Recurrence

1    2    10    3    7    6     4     8   11A

L 1 2 3 4

 extends an LIS ending 
at  if 

L[ j]
L[i] A[ j] > A[i]

: length of the longest increasing subsequence in 
 that ends at (and includes)  

L[i]
A A[i]

3



Example: Building a Recurrence

1    2    10    3    7    6     4     8   11A

L 1 2 3 4

 extends an LIS ending 
at  if 

L[ j]
L[i] A[ j] > A[i]

4

: length of the longest increasing subsequence in 
 that ends at (and includes)  

L[i]
A A[i]

3



Example: Building a Recurrence

  1    2    10    3    7    6    4     8   11A

L 1 2 3 4

 extends an LIS ending 
at  if 

L[ j]
L[i] A[ j] > A[i]

4 4

: length of the longest increasing subsequence in 
 that ends at (and includes)  

L[i]
A A[i]

3



Example: Building a Recurrence

  1    2    10    3    7    6    4     8   11A

L 1 2 3 4

 extends an LIS ending 
at  if 

L[ j]
L[i] A[ j] > A[i]

4 4

: length of the longest increasing subsequence in 
 that ends at (and includes)  

L[i]
A A[i]

3 5



Example: Building a Recurrence

  1    2    10    3    7    6    4     8    11A

L 1 2 3 4

 extends an LIS ending 
at  if 

L[ j]
L[i] A[ j] > A[i]

4 4

: length of the longest increasing subsequence in 
 that ends at (and includes)  

L[i]
A A[i]

3 5 6



LIS:  Recurrence



Assuming 
L[ j] = 1 + max{L[i] | i < j and A[i] < A[ j]}

max ∅ = 0



Recursion  DP→
• If we used recursion (without memoization) we’ll be inefficient—we’ll 

do a lot of repeated work


• Once you have your recurrence, the remaining pieces of the 
dynamic programming algorithm are


• Evaluation order. In what order should I evaluate my 
subproblems so that everything I need is available to evaluate a 
new subproblem?


• For LIS we just left-to-right on array indices


• Memoization structure. Need a table (array or multi-dimensional 
array) to store computed values


• For LIS, we just need a one dimensional array


• For others, we may need a table (two-dimensional array)



LIS Analysis
• Correctness


• Follows from the recurrence using induction

• Running time?


• Solve  subproblems


• Each one requires  time to take the min


• 


• Space?


•  to store array 

O(n)
O(n)

O(n2)

O(n) L[]



Recipe for a Dynamic Program
• Formulate the right subproblem.  The subproblem must have an 

optimal substructure


• Formulate the recurrence.  Identify how the result of the smaller 
subproblems can lead to that of a larger subproblem 


• State the base case(s).  The subproblem thats so small we know 
the answer to it!


• State the final answer. (In terms of the subproblem)


• Choose a memoization data structure.   Where are you going to 
store already computed results? (Usually a table)


• Identify evaluation order. Identify the dependencies: which 
subproblems depend on which ones? Using these dependencies, 
identify an evaluation order


• Analyze space and running time.  As always!



Acknowledgments
• Some of the material in these slides are taken from


• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)


• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)


• Shikha Singh

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

