Dynamic Programming li:
Edit Distance & LIS



Admin

* DP HW goes out today
* Four problems, but one is solved for you
 Use it as atemplate
* Faculty lecture series talk this afternoon in Wege
e Charlie Doret, Physics

e Winter Study Question



Today’s Outline

We'll explore dynamic programming problems that use different
memoization structures, getting as far as we can.

* Edit distance
e (Classic problem with many applications
* Requires a 2D memoization structure
Longest Increasing Subsequence
 More DP practice (slightly easier, OK if we don'’t get to it)

The problems themselves aren’t what is important, it's getting
practice with the technigues!



Edit Distance

Further Reading:_Chapter 3.7, Erickson



https://jeffe.cs.illinois.edu/teaching/algorithms/book/03-dynprog.pdf

Motivation

Edit distance is a metric that captures the similarity between
two strings.

 Edit distance has several important applications!

B-globin gene

Healthy person  ..GTGCHMGGCCCAT...

Person with . GTGCCGGCCCAT...

p-thalassaemia

point mutation

DNA sequencing: finding similarities between two genome sequences



Motivation

Edit distance is a metric that captures the similarity between
two strings.

 Edit distance has several important applications!

Go gle edite ditstance X  Q

Q Al [] Videos [&] Images [E News < Shopping : More Settings  Tools

About 949,000,000 results (0.69 seconds)

Showing results for edit distance
Search instead for edite ditstance

Text processing: finding similar strings and NLP



Problem Defintion

Problem. Given two stringsA =a; - a, - - - a, and
B=b;-b,---b,, find the edit distance between them.

 Edit distance between A and B is the smallest number of the
following operations that are needed to transform A into B

 Replace a character (substitution)

e Delete a character

e |nsert a character

. delete(d) . bstitute(d—p) . insert(t) .
riddle ————  ridle ———— riple - triple

Edit distance(riddle, triple): 3



Structure of the Problem

Problem. Given two stringsA =a; - a, - - - a, and
B=b;-b,---b,, find the edit distance between them.

« Notice that the process of getting from string A to string B by
doing substitutions, inserts and deletes is reversible

* Inserts in one string correspond to deletes in another

| delete(d) | substitute(d—p) insert(t) |
riddle > ridle > riple > triple
. insert(d) . substitute(p—d) delete(t) .
riddle < ridle < riple < triple

Edit distance(riddle, triple): 3



Sequence Alignment

We can visualize the problem of finding the edit distance as an
the problem of finding the best alignment between two strings

* Gaps in alignment represent inserts to top/deletes to bottom
* Mismatches in alignment represent substitutes

* (Cost of an alignment = number of gaps + mismatches
 Edit distance: minimum cost alignment
riddle
triple

cost =7/ cost = 3



Sequence Alignment

We can visualize the problem of finding the edit distance as an
the problem of finding the best alignment between two strings

* Gaps in alignment represent inserts to top/deletes to bottom

* Mismatches in alignment represent substitutes

* (Cost of an alignment = number of gaps + mismatches

 Edit distance: minimum cost alignment

principle misspell prehistoric

prinncipal mispell historic
aabbccaabb algorithm
ababbbcab alkhwarizmi




Sequence Alignment

prin-ciple
[T %X
prinncipal
(1 gap, 2 mm)

misspell

mis-pell
(1 gap)

aa-bb-ccaabb

(X [

ababbbc-a-b-
(5 gaps, 1 mm)

prin-cip-1le

prinncipal-
(3 gaps, 0 mm)

prehistoric

—-—=-historic
(3 gaps)

al-go-rithm-
[ xx [[x |
alKhwariz-mi
(4 gaps, 3 mm)

https://www.cs.cmu.edu/~ckingsf/class/02713-s13



Sequence Alignment

>gb|AC115706.7| Mus musculus chromosome 8, clone RP23-382B3, complete sequence

Query 1650 gtgtgtgtgggtgcacatttgtgtgtgtgtgegectgtgtgtgtgggtgectgtgtgtgt 1709
ARRRRRRR N N e reerrreer F o rrrrrer LEE L TEE
Sbjct 56838 GTGTGTGTGGAAGTGAGTTCATCTGTGTGTGCACATGTGTGTGCA--TGCATGCATGTGT 56895

Query 1710 gtg-gggcacatttgtgtgtgtgtgtgtgectgtgtgtgggtgecacatttgtgtgtgtge 1768
AR RN R L U I M M
Sbjct 56896 GTCCGGGCA------ TGCATGTCTGTGTGCATGTGTGTGTGTGTGCAT--GTGTGAGTAC 56947

Query 1769  ctgtgtgtgtgtgectgtgtgtgggggtgecacatttigtgtgtgtgtgtgectgtgtgtgg 1828
N DI I

Sbjct 56948 CTGTGTGTGTATGCTTGTATGTGTGTGTGTGCATGTGTGTAGGTGTGTATATGTGTAAGT 57007

Color key for alignment scores

[0 wso  [NESSNBa00N 200 | .
= BLAST: Basic Local
—...Alighment Search Tool
. : ‘ "]"\ \ -




Sequence Alignment Problem

Problem: Find an alignment of the two strings A, B where

. each character a;in A is matched to a string b; in B or
unmatched

« each character bj in B is matched to a string a; in A or
unmatched

. Matches are free if successful: cost(a;, b;) =0 if a; =b;

but penalized if unsuccessful: cost(a;, bj) =1 if a, # bj

« cost of an unmatched letter (gap) = 1

Total alignment cost = # unmatched (gaps) + Z cost(a;, b))

a;,b;

 Goal. Compute edit distance by finding an alignment of the
minimum total cost



Recursive Structure

Before we develop a dynamic program, we need to figure out the
recursive structure of the problem

* QOur alignment representation has an optimal substructure:

* Suppose we have the mismatch/gap representation of the
shortest edit sequence of two strings

* |f we remove the last column, the remaining columns must
represent the shortest edit sequence of the remaining prefixes!

U
e B |
— —
-
o I




Subproblem

 Subproblem

Edit(Z, 7): edit distance between

where)0 <i<nand0<;j<m

the strings a; - a, - - -a;and by - b, - - -

* Final answer

Edit(n, m)




Base Cases

We have to till out a two-dimensional array to memoize our
recursive dynamic program.

* \Which rows/columns can we fill immediately?

» Edit(i,0): Min number of edits to transform a string of
length 1 to an empty string

Edit(i, 0) =1 for0 <i < n

Edit(0, j) =jfor0<j<m




Recurrence

Imagine the optimal alignment between the two strings

 \What are the possibili

ties for the last column?

« |t could be that both letters match: cost O

« |t could be that both letters do not match: cost 1

e |t could bethatt

nere an unmatched character (gap):

either from A or

rom B: cost 1

ALT IR ALTR

ALGO | R ALGO I

R ALGO IR ALGOR
U ALTRU ALTR R U




Recurrence

Break the possibilities down for the last column in the

optimal alignmentofa, - a, - - - a;and by - by - - - b;:

« Case 1. Only one row has a character:

« Case 1a. Letter a; is unmatched ALGO | R
Edit(z, j) = Edit(i — 1,j) + 1 ALTRU
. Case 1b. Letter b; is unmatcheo ALGOR
Edit(i, j) = Edit(i,j — 1) + 1 ALTR U
e (Case 2: Both rows have characters:
e (Case 2a. Same characters: ALGO I R
Edit(z, j) = Editt—1, j — 1) ALT IR

R

Fdit(i, ) = EditGi — 1, j— 1) + 1 ALGO ;

e (Case 2b. Different characters:
ALTR I




Final Recurrence

Forl <i<mand1 < j< m, we have:

Edit(s,§ — 1) + 1
Edit(z, j) = min Edit(s — 1,7) + 1
Edit(s — 1,5 — 1) + (a; # bj)

Uses the shorthand: (a; # bj) which is 1 if it is true
(i.e., they mismatch), and zero otherwise.

This just lets us write cases 2a and 2b in one line...




From Recurrence to DP

We can now transform our recurrence into a dynamic program

Memoization Structure: We can memoize all possible values of

Edit(Z, j) in a table/ two-dimensional array of size O(nm):
Store Edit[i, j]ina2D array; 0 <i<nand0<j<m
Evaluation order:
* |sinteresting for a 2D problem
 Based on dependencies between subproblems

e We want all referenced values from our recurrence to be
computed before we need them



From Recurrence to DP

Evaluation order

 We can fill in row major order, which is row by row, from top down,
each row from left to right

* With this order, when we reach an entry in the table, our
recurrence references only filled-in entries




Space and Time

« The memoization uses O(nm) space

« We can compute each Edit[i, j]in O(1) time

« Overall running time: O(nm)




Memoization Table: Example

e Memoization table for ALGORITHM and ALTRUISTIC

e Bold numbers indicate where characters are same

« Horizontal arrow: deletion in A ALGORTITHM
01 23456 789
« \Vertical arrow (1): insertion in A Al1 012345 678
* Diagonal (“): (mis)match Lj2 1. 01234567
T|3 21 1234 456
 Bold red (\): free match
RI4 3 2 2 2 23456
 Only draw an arrow if used in DP ule 4 373733 345 6
* Any directed path of arrows 1|16 5 4 4 4 4 3 456
from top left to bottom right s|l7 6 555 5 4 4 5 6
repregents an optimal g 7 EMEYEYE E Vi e
edit distance sequence
119 8 7 7 7 7 6 5 56
cl10 9 8 8 8 8 7 6 6 6




Reconstructing the Edits

We don’t need to store the arrow!

An arrow can be reconstructed on the
fly in O(1) time using the numerical
values

Once the table is built, we can
construct the shortest edit
distance sequence in O(n + m) time

Does this remind you of any other
dynamic programs we've seen?

AL G ORI TH M
0O-1-:2-:3:4:5:6°78"°9
1 0612345678
2 1 01234 567
3 2 1 1234 456
4 3 2 2 2 234 56
S 4 3 3 3 3 3456
6 5 4 4 4 4 3 456
7 6 5 5 5 5 4 4 5 6
8 7 6 6 6 6 5 456
9 8 7 7 7 7 6 5 56
109 8 8 8 8 7 6 6 6




Longest Increasing
Subsequence

Further Reading:_Chapter 3.7, Erickson



https://jeffe.cs.illinois.edu/teaching/algorithms/book/03-dynprog.pdf

Longest Increasing Subsequence

Problem: Given a sequence of integers as an array A[1,...n], find the
longest subsequence whose elements are in increasing order

An increasing

subsequence with 1 2 10 3 7 6 4 8 11

length 4

cimmmcengs [ 12103 7 6 4 8 11

(Stated more formally...) Find the longest possible sequence of indices




Formalize the Subproblem

L|1]: length of the longest increasing subsequence
inAll,...,1] that ends at (and includes) Ali]l




ldentify the Base Case

L|1]: length of the longest increasing subsequence
in A that ends at (and includes) Ali]

Base Case. L|l]| ="




ldentify the Final Answer

L|1]: length of the longest increasing subsequence
in A that ends at (and includes) Ali]

Base Case. L|]l] =1

Final answer.




Base Case & Final Answer

L|1]: length of the longest increasing subsequence
in A that ends at (and includes) Ali]

Base Case. L|l] =1

Final answer. max L[]
1<i<n




Recurrence

How do we go from one subproblem to the next?

« Thatis, how do we compute L[i] assuming | know the values of
L[1], ..., Lli —1]

12103 706 4 8 11

Length of the LIS Length of the LIS
ending at 2? ending at 10?



Recurrence

Let’'s say we know the length of the longest subsequence
ending at A[1], A[2], ...A[i — 1]

What is the longest subsequence ending at A[i]? Either:

Ali] could potentially extend an earlier subsequence:

Can extend a longest subsequence ending at some A[k], with
Alk] < Ali], but which k?

We could try all k to get the answer

Or Ali] could start a new subsequence (i.e., it doesn't
extend any earlier increasing subsequence)



Example: Building a Recurrence

L[1]: length of the longest increasing subsequence in
A that ends at (and includes) Ali]

A 1T 2 10 3 7 o 4 38 11

T




Example: Building a Recurrence

L[1]: length of the longest increasing subsequence in
A that ends at (and includes) Ali]

A 1 2 10 3 7 6 4 8 11

T




Example: Building a Recurrence

L[1]: length of the longest increasing subsequence in
A that ends at (and includes) Ali]

A 1 2 10 3 7 6 4 8 11

T

L 112 |3




Example: Building a Recurrence

L[1]: length of the longest increasing subsequence in
A that ends at (and includes) Ali]

A 1 2 10 3 7 o6 4 8 11

How do we know 3
extends a past LIS?



Example: Building a Recurrence

L[1]: length of the longest increasing subsequence in
A that ends at (and includes) Ali]

A 1 2 10 3 7 o6 4 8 11

L[]] extends an LIS ending
at L[i] if A[j] > Ali]



Example: Building a Recurrence

L[1]: length of the longest increasing subsequence in
A that ends at (and includes) Ali]

A 1 2 10 3 7 o6 4 8 11

T

L 112 (3] 3] 4

L[ j] extends an LIS ending
at L[i] if A[j] > Ali]



Example: Building a Recurrence

L[1]: length of the longest increasing subsequence in
A that ends at (and includes) Ali]

A 1 2 10 3 7 6 4 8 11

T

L 1123 3]4]4

L[ j] extends an LIS ending
at L[i] if A[j] > Ali]



Example: Building a Recurrence

L[1]: length of the longest increasing subsequence in
A that ends at (and includes) Ali]

A 1 2 10 3 7 o 4 8 11

T

L 112 (3| 3]14]4]|4

L[]] extends an LIS ending
at L[i] if A[j] > Ali]



Example: Building a Recurrence

L[1]: length of the longest increasing subsequence in
A that ends at (and includes) Ali]

A 1 2 10 3 7 o 4 8 11

T

L 11213 3]14]4]4]5

L[]] extends an LIS ending
at L[i] if A[j] > Ali]



Example: Building a Recurrence

L[1]: length of the longest increasing subsequence in
A that ends at (and includes) Ali]

A 1 2 10 3 7 o 4 8 11

T

L 112 (3314|4456

L[]] extends an LIS ending
at L[i] if A[j] > Ali]



LIS: Recurrence

Lljl=1+max{L[i] | i <jandAli] < A[]]}
Assuming max @ = 0




Recursion — DP

e |f we used recursion (without memoization) we’ll be inefficient—we’ll
do a lot of repeated work

* Once you have your recurrence, the remaining pieces of the
dynamic programming algorithm are

 Evaluation order. In what order should | evaluate my
subproblems so that everything | need is available to evaluate a

new subproblem?
e For LIS we just left-to-right on array indices

 Memoization structure. Need a table (array or multi-dimensional
array) to store computed values

e For LIS, we just need a one dimensional array

* For others, we may need a table (two-dimensional array)



LIS Analysis

e (Correctness
* Follows from the recurrence using induction
* Running time?
« Solve O(n) subproblems
« Each one requires O(n) time to take the min
. O(n?
¢ Space?

« O(n) to store array L[]



Recipe for a Dynamic Program

* Formulate the right subproblem. The subproblem must have an
optimal substructure

 Formulate the recurrence. |dentify how the result of the smaller
subproblems can lead to that of a larger subproblem

e State the base case(s). The subproblem thats so small we know
the answer to it!

e State the final answer. (In terms of the subproblem)

e Choose a memoization data structure. Where are you going to
store already computed results? (Usually a table)

* ldentify evaluation order. |dentify the dependencies: which
subproblems depend on which ones? Using these dependencies,
identity an evaluation order

 Analyze space and running time. As always!



Acknowledgments

e Some of the material in these slides are taken from

* Kleinberg Tardos Slides by Kevin Wayne (https://
WWW.CS.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsl.pdf)

» Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE. pdf)

e Shikha Singh



https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

