
Dynamic Programming II:
Edit Distance & LIS

Admin
• DP HW goes out today

• Four problems, but one is solved for you

• Use it as a template

• Faculty lecture series talk this afternoon in Wege

• Charlie Doret, Physics

• Winter Study Question

Today’s Outline
We’ll explore dynamic programming problems that use different
memoization structures, getting as far as we can.

• Edit distance

• Classic problem with many applications

• Requires a 2D memoization structure

• Longest Increasing Subsequence

• More DP practice (slightly easier, OK if we don’t get to it)

The problems themselves aren’t what is important, it’s getting
practice with the techniques!

Edit Distance

Further Reading: Chapter 3.7, Erickson

https://jeffe.cs.illinois.edu/teaching/algorithms/book/03-dynprog.pdf

Motivation
Edit distance is a metric that captures the similarity between
two strings.

• Edit distance has several important applications!

DNA sequencing: finding similarities between two genome sequences

Motivation

Text processing: finding similar strings and NLP

Edit distance is a metric that captures the similarity between
two strings.

• Edit distance has several important applications!

Problem Defintion
Problem. Given two strings and

, find the edit distance between them.

• Edit distance between and is the smallest number of the
following operations that are needed to transform into

• Replace a character (substitution)

• Delete a character

• Insert a character

A = a1 ⋅ a2 ⋅ ⋅ ⋅ an
B = b1 ⋅ b2 ⋅ ⋅ ⋅ bm

A B
A B

ridle riddle triple riple
delete(d) substitute(d p)→ insert(t)

Edit distance(riddle, triple): 3

Structure of the Problem
Problem. Given two strings and

, find the edit distance between them.

• Notice that the process of getting from string to string by
doing substitutions, inserts and deletes is reversible

• Inserts in one string correspond to deletes in another

A = a1 ⋅ a2 ⋅ ⋅ ⋅ an
B = b1 ⋅ b2 ⋅ ⋅ ⋅ bm

A B

riddle ridle riple triple

Edit distance(riddle, triple): 3

riddle ridle riple triple
delete(d) substitute(d p)→ insert(t)

insert(d) substitute(p d)→ delete(t)

Sequence Alignment
We can visualize the problem of finding the edit distance as an
the problem of finding the best alignment between two strings

• Gaps in alignment represent inserts to top/deletes to bottom

• Mismatches in alignment represent substitutes

• Cost of an alignment = number of gaps + mismatches

• Edit distance: minimum cost alignment

r i d d l e

 t r i p l e
cost = 7

r i d d l e

 t r i p l e
cost = 3

Sequence Alignment
We can visualize the problem of finding the edit distance as an
the problem of finding the best alignment between two strings

• Gaps in alignment represent inserts to top/deletes to bottom

• Mismatches in alignment represent substitutes

• Cost of an alignment = number of gaps + mismatches

• Edit distance: minimum cost alignment

principle

prinncipal

misspell

mispell

prehistoric

historic

aabbccaabb

ababbbcab

algorithm

alkhwarizmi

https://www.cs.cmu.edu/~ckingsf/class/02713-s13

Sequence Alignment

Sequence Alignment

Sequence Alignment Problem
Problem: Find an alignment of the two strings where

• each character in is matched to a string in or
unmatched

• each character in is matched to a string in or
unmatched

• Matches are free if successful: cost() if , 
but penalized if unsuccessful: cost() if

• cost of an unmatched letter (gap)

•
Total alignment cost =

• Goal. Compute edit distance by finding an alignment of the
minimum total cost

A, B
ai A bj B

bj B ai A

ai, bj = 0 ai = bj
ai, bj = 1 ai ≠ bj

= 1

unmatched (gaps) + ∑
ai,bj

cost(ai, bj)

Recursive Structure
Before we develop a dynamic program, we need to figure out the
recursive structure of the problem

• Our alignment representation has an optimal substructure:

• Suppose we have the mismatch/gap representation of the
shortest edit sequence of two strings

• If we remove the last column, the remaining columns must
represent the shortest edit sequence of the remaining prefixes!

Subproblem
• Subproblem  
 
 
 
 
 

• Final answer

: edit distance between  
the strings and ,

where and

Edit(i, j)
a1 ⋅ a2 ⋅ ⋅ ⋅ ai b1 ⋅ b2 ⋅ ⋅ ⋅ bj

0 ≤ i ≤ n 0 ≤ j ≤ m

Edit(n, m)

Base Cases
We have to fill out a two-dimensional array to memoize our
recursive dynamic program.

• Which rows/columns can we fill immediately?

• : Min number of edits to transform a string of
length to an empty string
Edit(i,0)

i

 for

Edit for

Edit(i, 0) = i 0 ≤ i ≤ n

(0, j) = j 0 ≤ j ≤ m

Recurrence
Imagine the optimal alignment between the two strings

• What are the possibilities for the last column?

• It could be that both letters match: cost

• It could be that both letters do not match: cost

• It could be that there an unmatched character (gap):
either from or from : cost

0

1

A B 1

Recurrence
Break the possibilities down for the last column in the
optimal alignment of and :

• Case 1. Only one row has a character:

• Case 1a. Letter is unmatched

• Case 1b. Letter is unmatched

• Case 2: Both rows have characters:

• Case 2a. Same characters: 

• Case 2b. Different characters: 

a1 ⋅ a2 ⋅ ⋅ ⋅ ai b1 ⋅ b2 ⋅ ⋅ ⋅ bj

ai
Edit(i, j) = Edit(i − 1,j) + 1

bj
Edit(i, j) = Edit(i, j − 1) + 1

Edit(i, j) = Edit(i − 1, j − 1)

Edit(i, j) = Edit(i − 1, j − 1) + 1

Final Recurrence
For and , we have:1 ≤ i ≤ n 1 ≤ j ≤ m

Uses the shorthand: which is 1 if it is true
(i.e., they mismatch), and zero otherwise.

This just lets us write cases 2a and 2b in one line…

(ai ≠ bj)

From Recurrence to DP
• We can now transform our recurrence into a dynamic program

• Memoization Structure: We can memoize all possible values of
 in a table/ two-dimensional array of size :

• Store in a 2D array; and

• Evaluation order:

• Is interesting for a 2D problem

• Based on dependencies between subproblems

• We want all referenced values from our recurrence to be
computed before we need them

Edit(i, j) O(nm)

Edit[i, j] 0 ≤ i ≤ n 0 ≤ j ≤ m

From Recurrence to DP
Evaluation order

• We can fill in row major order, which is row by row, from top down,
each row from left to right

• With this order, when we reach an entry in the table, our
recurrence references only filled-in entries

Space and Time
• The memoization uses space

• We can compute each in time

• Overall running time:

O(nm)
Edit[i, j] O(1)

O(nm)

Memoization Table: Example
• Memoization table for ALGORITHM and ALTRUISTIC

• Bold numbers indicate where characters are same

• Horizontal arrow: deletion in

• Vertical arrow (↓): insertion in

• Diagonal (↘): (mis)match

• Bold red (↘): free match

• Only draw an arrow if used in DP

• Any directed path of arrows  
from top left to bottom right  
represents an optimal  
edit distance sequence

A
A

Reconstructing the Edits
• We don’t need to store the arrow!

• An arrow can be reconstructed on the
fly in time using the numerical
values

• Once the table is built, we can 
construct the shortest edit 
distance sequence in time

• Does this remind you of any other
dynamic programs we’ve seen?

O(1)

O(n + m)

Longest Increasing
Subsequence

Further Reading: Chapter 3.7, Erickson

https://jeffe.cs.illinois.edu/teaching/algorithms/book/03-dynprog.pdf

Longest Increasing Subsequence
Problem: Given a sequence of integers as an array , find the
longest subsequence whose elements are in increasing order 
 
 
 
 
 
 
 
 
 

(Stated more formally…) Find the longest possible sequence of indices
 such that

A[1,…n]

1 ≤ i1 < i2 < … < iℓ ≤ n A[ik] < A[ik+1]

1 2 10 3 7 6 4 8 11Longest Increasing
Subsequence: length 6

1 2 10 3 7 6 4 8 11
An increasing

subsequence with
length 4

To simplify, we will only compute length of the LIS

Formalize the Subproblem

: length of the longest increasing subsequence
in that ends at (and includes)
L[i]

A[1,…, i] A[i]

Identify the Base Case

: length of the longest increasing subsequence
in that ends at (and includes)
L[i]

A A[i]

Base Case. L[1] = ?

Identify the Final Answer

Base Case. L[1] = 1

: length of the longest increasing subsequence
in that ends at (and includes)
L[i]

A A[i]

Final answer. ?

Base Case & Final Answer

Base Case. L[1] = 1

: length of the longest increasing subsequence
in that ends at (and includes)
L[i]

A A[i]

Final answer. max
1≤i≤n

L[i]

Recurrence
How do we go from one subproblem to the next?

• That is, how do we compute assuming I know the values of L[i]
L[1], …, L[i − 1]

1 2 10 3 7 6 4 8 11

Length of the LIS
ending at 2?

Length of the LIS
ending at 10?

Recurrence
• Let’s say we know the length of the longest subsequence

ending at

• What is the longest subsequence ending at ? Either:

• could potentially extend an earlier subsequence:

• Can extend a longest subsequence ending at some , with
, but which

• We could try all to get the answer

• Or could start a new subsequence (i.e., it doesn’t
extend any earlier increasing subsequence)

A[1], A[2], …A[i − 1]

A[i]

A[i]
A[k]

A[k] < A[i] k?

k

A[i]

Example: Building a Recurrence

1 2 10 3 7 6 4 8 11A

L 1

: length of the longest increasing subsequence in
 that ends at (and includes)

L[i]
A A[i]

Example: Building a Recurrence

1 2 10 3 7 6 4 8 11A

L 1 2

: length of the longest increasing subsequence in
 that ends at (and includes)

L[i]
A A[i]

Example: Building a Recurrence

1 2 10 3 7 6 4 8 11A

L 1 2

: length of the longest increasing subsequence in
 that ends at (and includes)

L[i]
A A[i]

3

Example: Building a Recurrence

1 2 10 3 7 6 4 8 11A

L 1 2 3

: length of the longest increasing subsequence in
 that ends at (and includes)

L[i]
A A[i]

3

How do we know
extends a past LIS?

3

Example: Building a Recurrence

1 2 10 3 7 6 4 8 11A

L 1 2 3

: length of the longest increasing subsequence in
 that ends at (and includes)

L[i]
A A[i]

3

 extends an LIS ending
at if

L[j]
L[i] A[j] > A[i]

Example: Building a Recurrence

1 2 10 3 7 6 4 8 11A

L 1 2 3 4

 extends an LIS ending
at if

L[j]
L[i] A[j] > A[i]

: length of the longest increasing subsequence in
 that ends at (and includes)

L[i]
A A[i]

3

Example: Building a Recurrence

1 2 10 3 7 6 4 8 11A

L 1 2 3 4

 extends an LIS ending
at if

L[j]
L[i] A[j] > A[i]

4

: length of the longest increasing subsequence in
 that ends at (and includes)

L[i]
A A[i]

3

Example: Building a Recurrence

 1 2 10 3 7 6 4 8 11A

L 1 2 3 4

 extends an LIS ending
at if

L[j]
L[i] A[j] > A[i]

4 4

: length of the longest increasing subsequence in
 that ends at (and includes)

L[i]
A A[i]

3

Example: Building a Recurrence

 1 2 10 3 7 6 4 8 11A

L 1 2 3 4

 extends an LIS ending
at if

L[j]
L[i] A[j] > A[i]

4 4

: length of the longest increasing subsequence in
 that ends at (and includes)

L[i]
A A[i]

3 5

Example: Building a Recurrence

 1 2 10 3 7 6 4 8 11A

L 1 2 3 4

 extends an LIS ending
at if

L[j]
L[i] A[j] > A[i]

4 4

: length of the longest increasing subsequence in
 that ends at (and includes)

L[i]
A A[i]

3 5 6

LIS: Recurrence

Assuming
L[j] = 1 + max{L[i] | i < j and A[i] < A[j]}

max ∅ = 0

Recursion DP→
• If we used recursion (without memoization) we’ll be inefficient—we’ll

do a lot of repeated work

• Once you have your recurrence, the remaining pieces of the
dynamic programming algorithm are

• Evaluation order. In what order should I evaluate my
subproblems so that everything I need is available to evaluate a
new subproblem?

• For LIS we just left-to-right on array indices

• Memoization structure. Need a table (array or multi-dimensional
array) to store computed values

• For LIS, we just need a one dimensional array

• For others, we may need a table (two-dimensional array)

LIS Analysis
• Correctness

• Follows from the recurrence using induction

• Running time?

• Solve subproblems

• Each one requires time to take the min

•

• Space?

• to store array

O(n)
O(n)

O(n2)

O(n) L[]

Recipe for a Dynamic Program
• Formulate the right subproblem. The subproblem must have an

optimal substructure

• Formulate the recurrence. Identify how the result of the smaller
subproblems can lead to that of a larger subproblem

• State the base case(s). The subproblem thats so small we know
the answer to it!

• State the final answer. (In terms of the subproblem)

• Choose a memoization data structure. Where are you going to
store already computed results? (Usually a table)

• Identify evaluation order. Identify the dependencies: which
subproblems depend on which ones? Using these dependencies,
identify an evaluation order

• Analyze space and running time. As always!

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

• Shikha Singh

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

