
Algorithms: Introduction to Dynamic Programming

Learning objective: Students will
apply memoization techniques to speed
up recursion with overlapping subprob-
lems.

Begin by skimming the following model. You do not need to under-
stand all the code right away; the activity will guide you through it.
through the process of understanding it.

Model 1: Fibonaccis

Here are three functions to compute Fibonacci numbers, implemented in Python. You may as-
sume that they are all correct.

def fib1(n):

if n <= 1:

return n

else:

return fib1(n-1) + fib1(n-2)

def fib2(n):

fibs = [0] * (n+1) # Create initial array of all 0s

fibs[1] = 1

for i in range(2, n+1):

fibs[i] = fibs[i-1] + fibs[i-2]

return fibs[n]

fibtable = [0,1] # global table of Fibonacci numbers

def fib3(n):

while len(fibtable) < n+1:

fibtable.append(-1)

if fibtable[n] == -1:

fibtable[n] = fib3(n-1) + fib3(n-2)

return fibtable[n]



algorithms: introduction to dynamic programming 2

(This page is intentionally blank so that the model can be on it’s
own physical sheet of paper.)

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


algorithms: introduction to dynamic programming 3

Critical Thinking Questions: fib1 (15 minutes)

1 Recall that the Fibonacci numbers are defined by the recurrence

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2

Which of the three implementations corresponds most directly to
this definition?

2 Draw the call tree for fib1(5). Start by placing fib1(5) as the
root of the tree, and then draw its children fib1(4) and fib1(3).
In general, a node in the call tree represents a single function call
(with its parameters); a node’s parent is the function that called it,
and its children are any function(s) that it calls.

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


algorithms: introduction to dynamic programming 4

3 How many times does fib1(2) occur in the call tree? What about
fib1(1)? fib1(0)?

4 It turns out that fib1 is extremely slow.1 What do you think 1 In fact, it takes Θ(ϕn) time.

makes it so slow?

Once you reach this point, elect one member of your group to venture out to another team. (And if the other
team is a two-person group, they should also be sending one of their members to meet with the remain-
ing members of your group.) Discuss your answer to the previous question.

• Do you both cite the same reasons for fib1’s slow performance?

• Do you agree with all of each others’ reasons?

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


algorithms: introduction to dynamic programming 5

Critical Thinking Questions: fib2 and fib3 (25 minutes)

5 Trace the execution of fib2(5) and explain how it works using one
or two complete sentences.

6 Which does more work, fib2(5) or fib1(5)? Why?

7 In terms of Θ, how long does fib2(n) take?2 2 For the purposes of this activity, you
should assume that each addition takes
constant time.

8 Suppose we switch the direction of the for loop in fib2, so i loops
from n down to 2. Would it still work? Why or why not?

9 Trace the execution of fib3(5) and explain how it works. Draw
the call tree and explain how it works using one or two complete
sentences (in whichever order you find easiest).

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


algorithms: introduction to dynamic programming 6

10 In terms of Θ, how long does fib3(n) take? Justify your answer.

Once again, elect one member of your group to venture out to another team. Discuss your answer to
the previous question, and compare your call trees for fib3(5).

• Do you both agree on fib3(n)’s big-Theta performance?

• Do your call trees match?

11 Fill in this statement: fib3 is just like fib1 except that

.

12 Fill in this statement: fib2 is just like fib3 except that

.

13 Why don’t we do something like fib2 or fib3 in the case of merge
sort?

14 Consider the following recursive definition of Q(n) for n ≥ 0: Note that there are three base cases.

Q(0) = 0

Q(1) = Q(2) = 1

Q(n) = max

Q(n − 3)2

Q(n − 1) + Q(n − 2)

Using pseudocode, or any language your group agrees to use,
write an algorithm to calculate Q(n) efficiently.

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

	Model 1: Fibonaccis
	Critical Thinking Questions: fib1 (15 minutes)
	Critical Thinking Questions: fib2 and fib3 (25 minutes)

