
Algorithms: Minimum (Cost) Spanning Trees

Model 1: Minimum-weight Spanning Subgraphs (12 mins)

Definition 1. Given an undirected graph G = (V, E), a spanning subgraph of G is a connected sub-
graph G′ = (V, E′) of G; that is, a connected graph with the same vertices as G and a subset of its
edges.

Definition 2. Given a weighted, undirected graph G, the minimum-weight spanning subgraph
(MWSS) of G is the spanning subgraph of G whose total weight (i.e. the sum of the weights of
all its edges) is as small as possible.

139

12

10

15

7

1

5

6

4

11

18

8
16

17

2

3

j

i h

g
f

e
d

c

b

a

1 Draw any spanning subgraph of the example graph from Model 1.

2 Can a graph G have more than one spanning subgraph?

3 Is it possible for a graph G to be a spanning subgraph of itself?
Why or why not?

4 Is it possible for a disconnected graph to have a spanning sub-
graph? Why or why not?

algorithms: minimum (cost) spanning trees 2

5 Can a graph G have more than one minimum-weight spanning
subgraph? Give an example, or explain why it is not possible.

6 Find a MWSS for the graph in Model 1. Does it have more than
one? Don’t spend too much time on this

question; just find a spanning subgraph
which you reasonably think is the
minimum, and move on.

7 Which of the following scenarios could be modeled by finding a
MWSS?

(a) A railroad company wants to connect a given set of cities by
train routes as cheaply as possible. Connecting two cities by a
route costs an amount of money proportional to the distance
between them.

(b) A company wants to network a set of data centers with high-
speed fiber optic connections, and they want to mimimize the
total amount of fiber optic cable used. There must be at least
two routes between any pair of data centers, so that any one
fiber optic link going down will not disconnect the network.

(c) Given a network of train routes between a collection of cities
and the cost of each route, find the cheapest route between two
given cities.

(d) You have the latest Megazorx puzzle toy, which can be in any
one of a number of different states. There are various moves
which can transform the Megazorx from one state to another. In
order to impress your friends, you want to be able to transform
it from any starting state into any other requested state (which
may in general require a whole sequence of moves). You want
to be able to do this

(i) . . . using the fewest number of moves possible for each given
pair of start and end states.

(ii) . . . without having to memorize any more moves than abso-
lutely necessary.

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

algorithms: minimum (cost) spanning trees 3

8 (Review) What is the definition of a tree graph?

9 Prove: in a weighted, undirected graph with positive weights, a
MWSS must always be a tree. Hint: use a proof by contradiction.

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

algorithms: minimum (cost) spanning trees 4

Because of the result from Question 9, we typically refer to a
minimum-weight spanning subgraph as a minimum spanning tree
(MST). Now that you understand the definition of a MST and some
scenarios that MSTs can be used to model, let’s explore some algo-
rithms for finding them.

Model 2: Four algorithms (13 mins)

Given a weighted, undirected graph G, the goal of each algorithm is to pick a subset of the edges
of G which constitute a MST.

• (Kruskal’s) Consider all the edges in order from smallest to biggest weight; for each edge, pick
it if and only if it does not complete a cycle with previously chosen edges.

• (Prim’s) Choose an arbitrary vertex to start and mark it as visited. At each step, pick the small-
est edge which connects any visited vertex to any unvisited vertex and which would not com-
plete a cycle with previously chosen edges; mark the other end of the edge visited.

• (Johnson’s) Choose any vertex to start. At each step, pick the smallest edge connected to the
current vertex which has not already been chosen and would not complete a cycle with previ-
ously chosen edges. Repeat until running out of options; then pick a new starting vertex and
repeat the entire process. Do this until all vertices are connected.

• (Reverse delete) Start with all edges initially “picked”, and consider them in order from
biggest to smallest weight. For each edge, throw it out (i.e. “unpick” it) if and only if doing
so would not disconnect the remaining edges.

10 On the next page are four copies of the same graph. Use these to
trace the execution of each algorithm in the model.

11 One of these algorithms is fake. Which one? Give an example
showing why it does not work.

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

algorithms: minimum (cost) spanning trees 5

4

1
20

2

9

3
5

e

d

cb

a

4

1
20

2

9

3
5

e

d

cb

a

4

1
20

2

9

3
5

e

d

cb

a

4

1
20

2

9

3
5

e

d

cb

a

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

algorithms: minimum (cost) spanning trees 6

The rest of the activity we will focus on Kruskal’s Algorithm and
proving its correctness.

Model 3: Kruskal’s Algorithm (10 mins)

139

12

10

15

7

1

5

6

4

11

18

8
16

17

2

3

j

i h

g
f

e
d

c

b

a

Require: Undirected, weighted graph G = (V, E)
1: T ← ∅ ▷ T holds the set of edges in the MST
2: Sort E from smallest to biggest weight
3: for each edge e ∈ E do
4: if e does not make a cycle with other edges in T then
5: Add e to T

12 Simulate Kruskal’s Algorithm on the graph in Model 3. What is
the total weight of the resulting spanning tree?

13 The way the algorithm is written in Model 3, one must iterate
through every single edge in E. However, this is not always neces-
sary. Can you think of a simple way to tell when we can stop the
loop early?

14 Explain why, even in the worst case, Θ(log2 |V|) = Θ(log2 |E|) in
any graph.

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

algorithms: minimum (cost) spanning trees 7

15 In the above algorithm, how long does line 2 take? Simplify your
answer using the observation from the previous question.

16 Can you think of a way to implement line 4? How long would it
take?

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

algorithms: minimum (cost) spanning trees 8

Model 4: The Cut Property (15 mins)

139

12

10

15

7

1

5

6

4

11

18

8
16

17

2

3

j

i h

g
f

e
d

c

b

a

Definition 3. A cut in a graph G = (V, E) is a partition of the vertices V into two sets S and T,
that is, every vertex is in either S or T but not both. We say that an edge e crosses the cut (S, T) if
one vertex of e is in S and the other is in T.

Theorem 4 (Cut Property). Given a weighted, undirected graph G = (V, E), let S and T be any partition
of V, and suppose e is some edge crossing the (S, T) cut, such that the weight of e is strictly smaller than
the weight of any other edge crossing the (S, T) cut. Then every minimum spanning tree of G must include
e.

17 Give three examples of cuts in the graph from Model 4 and iden-
tify the smallest edge crossing each cut.

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

algorithms: minimum (cost) spanning trees 9

Proving the cut property. Let’s now prove the cut property.

Proof. Let G be a weighted, undirected graph G = (V, E), let S and
T be an arbitrary partition of V into two sets, and suppose e = (x, y)
is the smallest-weight edge with one endpoint in S and one in T. We

wish to show that .

We will prove the contrapositive. Suppose M is a spanning tree of

G which does not contain the edge e. Since M is a it contains a

unique

between any two . So consider the unique

in M between . It must cross the cut at least once since Hint: draw a picture!

; suppose it crosses at e′ = (x′, y′),
with x′ ∈ X and y′ ∈ Y. We know that the weight of e is smaller than

the weight of e′, since .

Now take M and replace with ; the result is

still because ,

but it has a smaller total because .

So, we have shown that any spanning tree M which does not

contain the edge e can be made into a ,

which means that M is not a .

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

algorithms: minimum (cost) spanning trees 10

Proving correctness. The cut property can be used to directly show
the correctness of several MST algorithms. Let’s prove the correct-
ness of Kruskal’s Algorithm; the proofs for the other algorithms are
similar.

Theorem 5. Kruskal’s Algorithm is correct.

Proof. Suppose at some step the algorithm picks the edge e = (x, y).
Let X be the set of vertices connected to x by edges which have
been picked so far (not including e), and let Y be all other vertices.
x ∈ X by definition. We know that y /∈ X since if it was, e would

make a but then Kruskal’s Algorithm wouldn’t .
e therefore crosses the cut (X, Y). No other edges which have been

picked previously cross the cut, since .

Therefore e must be the smallest

because .
Therefore by the Cut Property e must be in any MST and Kruskal’s
Algorithm is correct to pick it.

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

	Model 1: Minimum-weight Spanning Subgraphs (12 mins)
	Model 2: Four algorithms (13 mins)
	Model 3: Kruskal's Algorithm (10 mins)
	Model 4: The Cut Property (15 mins)

