
Graphs and Traversals

Reminders/ Check in
• Assignment 01 due tonight at 10 pm (Gradescope Assignment 1)

• Assignment 02 will be released later today

• If you haven’t done so already, check out Problem Set Advice

• Take advantage of office hours today:

• Mine: 1.30-3 pm, TAs: 6-10 pm

• Questions? 

• Announcements?

• Winter Carnival - No class Friday

Today’s Outline
• Formal definitions of graph terms

• Review common approaches for graph representation

• Review breadth-first search

• Review depth-first search

• Search Proofs (runtime, correctness)

Review: Undirected Graphs
An undirected graph

• is the set of nodes, is the set of edges

• Graph size parameters:

• Sometimes we consider weighted graphs, where each edge
 has a weight

G = (V, E)
V E

n = |V | , m = |E |

e w(e)

Unweighted,
Undirected Graph

V = {1,2,3,4,5,6,7,8}

, n = 8 m = 11

E = {(1,2), (1,3), (2,3), (2,4), (2,5), (3,5), (3,7), (3,8), (4,5), (5,6), (7,8)}

Representing Graphs (Review)
Option 1a: Adjacency matrix.

• matrix where if n-by-n A[u][v] = 1 (u, v) ∈ E

 1 2 3 4 5 6 7 8

1 0 1 1 0 0 0 0 0

2 1 0 1 1 1 0 0 0

3 1 1 0 0 1 0 1 1

4 0 1 0 0 1 0 0 0

5 0 1 1 1 0 1 0 0

6 0 0 0 0 1 0 0 0

7 0 0 1 0 0 0 0 1

8 0 0 1 0 0 0 1 0

n = |V | , m = |E |

Representing Graphs (Review)
Option 1a: Adjacency matrix.

• matrix where if

• Space _____?

• Checking if takes _____ time?

n-by-n A[u][v] = 1 (u, v) ∈ E

(u, v) ∈ E

 1 2 3 4 5 6 7 8

1 0 1 1 0 0 0 0 0

2 1 0 1 1 1 0 0 0

3 1 1 0 0 1 0 1 1

4 0 1 0 0 1 0 0 0

5 0 1 1 1 0 1 0 0

6 0 0 0 0 1 0 0 0

7 0 0 1 0 0 0 0 1

8 0 0 1 0 0 0 1 0

O(1)

O(n2)

n = |V | , m = |E |

Representing Graphs (Review)
Option 1b: Adjacency list.

• Array of lists, where each list stores the neighbors of a given
node

1 3 2

2

3

4 5

5

6

7 3 8

8

1 3 5

2 1 5 87

2 3 4 6

5

3 7

2

4

n = |V | , m = |E |

One list per vertex . 
List contains ’s neighbors

vi ∈ V
i vi

Representing Graphs (Review)
Option 1b: Adjacency list.

• Array of lists, where each list stores the neighbors of a given
node

• Space ________?

• Checking if takes _____________ time?(u, v) ∈ E

O(n + m)

O(degree(u))

1 3 2

2

3

4 5

5

6

7 3 8

8

1 3 5

2 1 5 87

2 3 4 6

5

3 7

2

4

n = |V | , m = |E |

Graph Terminology (Review)
• A walk in an undirected graph is a sequence of vertices

 such that every consecutive pair .

• A walk is path if all vertices are distinct (no repeats!).

• The length of a path is the number of edges on the path 

• An undirected graph is connected if for every pair of nodes and , there is
a path between and (e.g., every node is reachable from all other nodes)

• A connected component is the set of all vertices/edges reachable from
some vertex

• A connected graph has 1 connected component. 

• A cycle is a walk where and where no other vertices
repeat

G = (V, E)
u1, u2, …, uk (ui−1, ui) ∈ E

u v
u v

v

u1, u2, …, uk u1 = uk

Trees (Review)
An undirected graph is a tree if it is connected and acyclic (i.e, it does
not contain a cycle)

Lemma. Let be an undirected graph with nodes. Then any two of
these conditions imply the third

• G is connected

• G does not contain a cycle

• G has edges

G n

n − 1

Graph Traversals
A few common questions we ask about a graph :

• Connectivity. How do we verify if a graph is connected?

• Reachability. Given , is there a path between them?

G = (V, E)

s, t ∈ V

Answers can be determined by “traversing the graph”

• Two classic graph traversal algorithms:

• Breadth-first search (BFS)

• Depth-first search (DFS) 
 

• BFS & DFS are remarkably similar algorithms that differ in the
data structure used

Start at some node and
radiate outward

Start at some node and
keep going until you hit

a dead end

Breadth-first Search
Explore outwards in all possible directions from starting point, peeling
“one layer after another”

• BFS algorithm: Initialize

•

• all nodes that do not belong to or that are adjacent

to a node in

•

• all nodes that do not belong an earlier layer that are

adjacent to a node in

L0 = {v}
L1 = all neighbors of L0
L2 = L0 L1

L1
…
Li+1 =

Li

v L1 L2 Ln–1

BFS Implementation
We need data structures to represent:

• Nodes that we have not encountered yet

• Nodes that we have encountered but not yet “explored”

• Nodes that have been “fully explored” (encountered all its neighbors
as well)

 

v L1 L2 Ln–1

BFS Implementation
Suppose we are currently exploring node

• Its neighbors will be marked “encountered”, but when will they be
explored compared to other encountered but unexplored nodes?

• BFS Idea: Explore all nodes at level (same distance from initial
node) before moving on to level

• Rule: first encountered node should be first node to be explored

• Which data structure should we use?

• Queue! First-in-first-out

u

i
i + 1

v L1 L2 Ln–1

BFS Implementation: Queue

Observations:

• Nodes that we have not encountered have never been added to Q

• When a node is marked (after extraction from Q), all ’s neighbors are then
enqueued, so the next time we see we can ignore it —its already been
explored!

• We may enqueue some nodes multiple times, but we only explore them once
(if a marked node is extracted, it is skipped)

u u
u

BFS (G, s):
 Set status of all nodes to unmarked
Place s into the queue Q
While Q is not empty

Extract v from Q
If v is unmarked
Mark v
For each edge (v, w):
 Put w into the queue Q

BFS Example

1

2

3

5

7 6

4

Tracing the Traversal: BFS Tree
• We can remember parent nodes (the node at level that lead us to

a given node at level)

• Keeping track of these relationships produces a tree rooted at

BFS-Tree(G, s):
Put (∅, s) in the queue Q
While Q is not empty

Extract (p, v) from Q
If v is unmarked

Mark v
parent(v) = p
For each edge (v, w):
 Put (v, w) into the queue Q (*)

i
i + 1

s

BFS Analysis
• Inserting and extracting an edge from a queue: _____ time

• For each marked node , we run the for loop for its edges: _____ times

• Overall running time? ______

• Can we tighten our analysis?

• Yes! We can improve our analysis to

• Node has incident edges

•
Total time processing edges:

v

O(n + m)
u degree(u) (u, v)

∑
u∈V

degree(u) = 2m

each edge (u, v) is counted exactly twice  
in sum: once in degree(u) and once in degree(v)

O(1)
O(n)

O(n2)

Depth-First Search

Stack Instead of Queue
If we change how we store the visited vertices (the data structure we
use), it changes how we traverse the graph

BFS (G, s):
 Set status of all nodes to unmarked
Place s into the queue Q
While Q is not empty

Extract v from Q
For each edge (v, w):
 If w is unmarked
 Put w into the queue Q

Stack Instead of Queue
If we change how we store the visited vertices (the data structure we
use), it changes how we traverse the graph

DFS (G, s):
Set status of all nodes to unmarked
Place s into the stack S
While S is not empty

Extract v from S
For each edge (v, w):
 If w is unmarked
 Put w into the stack S

Depth-First Search: Recursive
DFS is perhaps the more natural traversal algorithm to write.

• Can be written iteratively or recursively

• Both DFS versions are the same; can actually see the “recursion
stack” in the iterative version

Recursive-DFS(u):
 Set status of u to marked # encountered u
 for each edge (u, v):
 if v's status is unmarked:
 DFS(v)
 # done exploring neighbors of u

Example Graph

DFS Running Time
We can apply the same analysis as we did for BFS.

• Inserts and extracts to a stack: time

• Setting status of each node to unmarked:

• Each node is set marked at most once; equivalently DFS is
called at most once for each node

• For every node , explore edges

•

• Overall, running time

O(1)
O(n)

(u)

v degree(v)

∑
v

degree(v) = 2m

O(n + m)

DFS returns a spanning tree, similar to BFS

DFS-Tree(G, s):
Put (∅, s) in the stack S
While S is not empty

Extract (p, v) from S
If v is unmarked

Mark v
parent(v) = p
For each edge (v, w):
 Put (v, w) into the stack S

Depth-First Search Tree

The spanning tree formed by parent edges in a DFS are usually long
and skinny

Proving Correctness

DFS Correctness
• DFS finds precisely the set of nodes reachable from start node

• That is, DFS() marks node iff node is reachable from

• Proof.

• Since is marked,) is an edge in the graph

• Claim. leads to

• Induction on the sequence of vertices marked by DFS

• Let denote the order in which vertices are
marked, suppose claim holds all vertices with index less than

• Consider : parent must be discovered before , and thus
the claim holds for it, since () is an edge, we have a
path from to

s
s x x s

(⇒)
x (x, parent(x))
x → parent(x) → parent(parent(x)) → ⋯ s

u1, u2, …, uk, …, un
k

uk (uk) uk
uk, parent(uk)

uk s

DFS Correctness
• DFS finds precisely the set of nodes reachable from start node

• That is, DFS() marks node iff node is reachable from

• Proof.

• Suppose node is reachable from via path , but is not
marked by DFS

• Since is marked by DFS and is not, there must be a first node
 on that is not marked by DFS

• Thus, there is an edge such that is marked and is
not marked

• But this cannot happen, since when is marked, all its
neighbors are also marked

s
s x x s

(⇐)
x s P x

s x
v P

(u, v) ∈ P u v

u
⇒ ⇐ ∎

BFS Correctness
• Breadth first search finds precisely the set of nodes reachable from

• That is, BFS() marks node iff node is reachable from

• Proof.

• Since is marked,) is an edge in the graph

• Claim. leads to

• Induction on the sequence of vertices marked by BFS

• Let denote the order in which vertices are
marked, suppose claim holds all vertices with index less than

• Consider : parent must be discovered before , and thus
the claim holds for it, since () is an edge, we have
a path from to

s
s x x s

(⇒)
x (x, parent(x))
x → parent(x) → parent(parent(x)) → ⋯ s

u1, u2, …, uk, …, un
k

uk (uk) uk
uk, parent(uk)

uk s

BFS Correctness
• Breadth first search finds precisely the set of nodes reachable from

• That is, BFS() marks node iff node is reachable from

• Proof.

• Suppose node is reachable from via path , but is not
marked by BFS

• Since is marked by BFS and is not, there must be a first node
 on that is not marked by BFS

• Thus, there is an edge such that is marked and is
not marked

• But this cannot happen, since when is marked, all its
neighbors are also marked

s
s x x s

(⇐)
x s P x

s x
v ≠ s P

(u, v) ∈ P u v

u
⇒ ⇐ ∎

