Graphs and Traversals

Reminders/ Check In

Assignment 01 due tonight at 10 pm (Gradescope Assignment 1)
Assignment 02 will be released later today

If you haven't done so already, check out Problem Set Advice
Take advantage of office hours today:

* Mine: 1.30-3 pm, TAs: 6-10 pm

Questions?

Announcements?

* Winter Carnival - No class Friday

Today’s Outline

—ormal definitions of graph terms

Review common approaches for graph representation
Review breadth-first search
Review depth-first search

Search Proofs (runtime, correctness)

Review: Undirected Graphs

An undirected graph G = (V, E)
« Visthe set of nodes, E is the set of edges
« Graph size parameters:n = |V|, m = | E|

* Sometimes we consider weighted graphs, where each edge
e has a weight w(e)

Unweighted,

Undirected Graph

V=1{1,2,3,45,6,7,8}
E=1{(12),(1,3),2,3),2.4),(2,5),(3.,5),3,7),(3,8),(4.5),(5,6), (7,8)]

Representing Graphs (Review)

Option 1a: Adjacency matrix.

o n-by-n matrix where Alu][v] =1if (u,v) € E

0O N o U1l B W N B

OB OB ORBNOREOCRE I O RN
© © O RFREFRIF O KL N
R P, O kP O O Fr kL W
OB ORBNONE _ENORBEC] Bl (O RS
©O O R O Rk kP O© U
OB ORBONE _ENOBIOBORBORNe)
_ O O O O P © ©
O IO BNORBON _ENORBNORNe

n=|V|,m=|E|

Representing Graphs (Review)

Option 1a: Adjacency matrix.
o n-by-n matrix where Alu][v] =1if (u,v) € E
e Space 0(_”2)?
« Checking if (i, Vv) € E takes O(1) time?

0O N o U1l B W N B

OBNOBONBORBIONE SN S INORB S
©O OO R, RFPr PR O Kk N
R P, O kP O O Fr kL W
OB ORBNO NN IO RN C R N C RN
©O O R O Rk kP O© U
OB ORBONE _ENOBIOBORBORNe)
_ O O O O P © ©
O IO BNORBON _ENORBNORNe

n=|V|,m=|E|

Representing Graphs (Review)

Option 1b: Adjacency list.

* Array of lists, where each list stores the neighbors of a given
node

One list per vertex v; € V.

List 7 contains v;'s neighbors

1 |3 |eT—>
-2 |1 [e— 5 8
3 2] e 7]e 8 8
- 4 2 || e——»
5 |2] e 6
6 X2
7
n=|V|, m=|E] i

Representing Graphs (Review)

Option 1b: Adjacency list.

* Array of lists, where each list stores the neighbors of a given
node

e SpaceOn+m) 7

 Checking if (1, v) € E takes _O(degree(w)) time?

1|8] e 2 8
ancRoERncrn
o (e[l [opels [o —fo BB
4 (2] 1> 5 G
5 2 | &—» 3 | —» 4
a R
7
n=|V|,m=|E| °

Graph Terminology (Review)

« A walk in an undirected graph G = (V, E) is a sequence of vertices
Uy, Uy, ..., W, such that every consecutive pair (u,_, u;) € E.

A walk is path if all vertices are distinct (no repeats!).

* The length of a path is the number of edges on the path

« An undirected graph is connected if for every pair of nodes u and v, there is
a path between u and v (e.g., every node is reachable from all other nodes)

* A connected component is the set of all vertices/edges reachable from
some vertex v

A connected graph has 1 connected component.

« Acycleisawalk uy, u,, ..., u;, where uy = u;, and where no other vertices
repeat

Trees (Review)

An undirected graph is a tree if it is connected and acyclic (i.e, it does
not contain a cycle)

Lemma. Let G be an undirected graph with n nodes. Then any two of
these conditions imply the third

G is connected
G does not contain a cycle

G has n — 1 edges (3

Graph Traversals

A few common guestions we ask about a graph G = (V, E) :
 Connectivity. How do we verity if a graph is connected?

« Reachability. Given s, € V, is there a path between them?

Answers can be determined by “traversing the graph”

e [wo classic graph traversal algorithms: B e o aole 22 oo

* Breadth-first search (BFS) cibe vl

* Depth-first search (DFS) Start at some node and

keep going until you hit
a dead end

« BFS & DFS are remarkably similar algorithms that differ in the
data structure used

Breadth-first Search

Explore outwards in all possible directions from starting point, peeling
‘one layer after another”

. BFS algorithm: Initialize Ly = {v}

« L, = all neighbors of L

« L, = all nodes that do not belong to L or L, that are adjacent
to a node in L,

« L. ;= allnodes that do not belong an earlier layer that are

adjacent to a node in L,

BFS Implementation

We need data structures to represent:

* Nodes that we have not encountered yet

 Nodes that we have encountered but not yet “explored”

 Nodes that have been “fully explored” (encountered all its neighbors
as well)

BFS Implementation

Suppose we are currently exploring node u

* [|ts neighbors will be marked “encountered”, but when will they be
explored compared to other encountered but unexplored nodes?

« BFS Idea: Explore all nodes at level 1 (same distance from initial
node) before moving on to level i + 1

 Rule: tirst encountered node should be first node to be explored
 Which data structure should we use”?

e Queue! First-in-first-out

BFS Implementation: Queue

BFS (G, s):
Set status of all nodes to unmarked

Place s 1nto the queue (

While Q 1s not empty
Extract v from Q
If v 1s unmarked
Mark v
For each edge (v, w):
Put w into the queue Q

Observations:

Nodes that we have not encountered have never been added to Q

When a node u is marked (after extraction from Q), all u’s neighbors are then
enqueued, so the next time we see u we can ignore it —its already been
explored!

We may enqueue some nodes multiple times, but we only explore them once
(if a marked node is extracted, it is skipped)

BFS Example

2 \5
/ \ / ™

Tracing the Traversal: BFS Tree

« We can remember parent nodes (the node at level 1 that lead us to
a given node at level 1 + 1)

o Keeping track of these relationships produces a tree rooted at §

BFS-Tree(G, s):

Put (2, s) 1n the queue Q

While Q 1s not empty

Extract (p, v) from Q
If v 1s unmarked
Mark v
parent(v) =
For each edge (v, w):
Put (v, w) 1nto the queue Q (*)

BFS Analysis

Inserting and extracting an edge from a queue: O(1) time

For each marked node v, we run the for loop for its edges: O() times

2
Overall running time? O(n-)

* (Can we tighten our analysis?
Yes! We can improve our analysis to O(n + m)

« Node u has degree(u) incident edges (u, V)

Total time processing edges: Z degree(u) = 2m
ueV T

each edge (u, v) is counted exactly twice
in sum: once in degree(u) and once in degree(v)

Depth-First Search

Stack Instead of Queue

It we change how we store the visited vertices (the data structure we
use), it changes how we traverse the graph

BFS (G, s):
Set status of all nodes to unmarked
Place s into the queue (
While Q 1s not empty
Extract v from Q
For each edge (v, w):
If w 1s unmarked
Put w 1nto the queue Q

Stack Instead of Queue

It we change how we store the visited vertices (the data structure we
use), it changes how we traverse the graph

DFS (G, s):

Set status of all nodes to unmarked
Place s 1nto the stack S

While S 1s not empty

Extract v from S
For each edge (v, w):
If w 1s unmarked
Put w 1nto the stack S

Depth-First Search: Recursive

DFES is perhaps the more natural traversal algorithm to write.
* Can be written iteratively or recursively

 Both DFS versions are the same; can actually see the “recursion
stack” in the iterative version

Recursive-DFS(u):
Set status of u to marked
for each edge (u, v):
1f v's status 1s unmarked:
DFS(v)

Example Graph

DFS Running Time

We can apply the same analysis as we did for BFS.

Inserts and extracts to a stack: O(1) time
Setting status of each node to unmarked: O(n)

Each node is set marked at most once; equivalently DFS(u) is
called at most once for each node

For every node v, explore degree(v) edges

_ Z degree(v) = 2m

Overall, running time O(n + m)

Depth-First Search Tree

DFS returns a spanning tree, similar to BFS

DFS-Tree(G, s):

Put (2, s) 1n the stack S

While S 1s not empty

Extract (p, v) from S
If v 1s unmarked
Mark v
parent(v) = p
For each edge (v, w):
Put (v, w) 1nto the stack S

The spanning tree formed by parent edges in a DFS are usually long
and skinny

Proving Correctness

DFS Correctness

o DFS finds precisely the set of nodes reachable from start node s

« Thatis, DFS(s) marks node x iff node x is reachable from s

e Proof. (=)

Since x is marked, (x, parent(x))) is an edge in the graph
Claim. x — parent(x) — parent(parent(x)) — --- leadsto s
Induction on the sequence of vertices marked by DFS

Let uy, u,, ..., U, ..., u, denote the order in which vertices are
marked, suppose claim holds all vertices with index less than k

Consider u;: parent(u;,) must be discovered before u,;, and thus
the claim holds for it, since (i, parent(u;)) is an edge, we have a
path from u to s

DFS Correctness

« DFS finds precisely the set of nodes reachable from start node s

o Thatis, DFS(s) marks node x iff node x is reachable from s

e Proof. (<)

Suppose node x is reachable from s via path P, but x is not
marked by DFS

Since s is marked by DFS and x is not, there must be a first node
v on P that is not marked by DFS

Thus, there is an edge (u,v) € P such that u is marked and v is
not marked

But this cannot happen, since when u is marked, all its
neighbors are also marked = < |

BFS Correctness

« Breadth first search finds precisely the set of nodes reachable from s
o Thatis, BFS(s) marks node x iff node x is reachable from s
e Proof. (=)

« Since x is marked, (x, parent(x))) is an edge in the graph

e Claim. x = parent(x) — parent(parent(x)) — :-- leadsto s

* Induction on the sequence of vertices marked by BFS

o Letuy,u,,...,u,...,u, denote the order in which vertices are
marked, suppose claim holds all vertices with index less than k

 Consider u;: parent(u,) must be discovered before u;, and thus
the claim holds for it, since (u;, parent(i;,)) is an edge, we have
a path from u;, to §

BFS Correctness

« Breadth first search finds precisely the set of nodes reachable from s

o Thatis, BFS(s) marks node x iff node x is reachable from s

e Proof. (<)

Suppose node x is reachable from s via path P, but x is not
marked by BFS

Since s is marked by BFS and x is not, there must be a first node
v # s on P that is not marked by BFS

Thus, there is an edge (u,v) € P such that u is marked and v is
not marked

But this cannot happen, since when u is marked, all its
neighbors are also marked = < |

