
Graphs and Traversals



Reminders/ Check in
• Assignment 01 due tonight at 10 pm (Gradescope Assignment 1)


• Assignment 02 will be released later today


• If you haven’t done so already, check out Problem Set Advice


• Take advantage of office hours today:


• Mine:  1.30-3 pm, TAs:  6-10 pm


• Questions? 

• Announcements?


• Winter Carnival - No class Friday



Today’s Outline
• Formal definitions of graph terms


• Review common approaches for graph representation


• Review breadth-first search


• Review depth-first search


• Search Proofs (runtime, correctness)



Review: Undirected Graphs
An undirected graph 


•  is the set of nodes,  is the set of edges


• Graph size parameters: 


• Sometimes we consider weighted graphs, where each edge 
 has a weight  

G = (V, E)
V E

n = |V | , m = |E |

e w(e)

Unweighted, 
Undirected Graph

V = {1,2,3,4,5,6,7,8}

, n = 8 m = 11

E = {(1,2), (1,3), (2,3), (2,4), (2,5), (3,5), (3,7), (3,8), (4,5), (5,6), (7,8)}



Representing Graphs (Review)
Option 1a: Adjacency matrix.

•  matrix where  if n-by-n A[u][v] = 1 (u, v) ∈ E

   1 2 3 4 5 6 7 8

1  0 1 1 0 0 0 0 0

2  1 0 1 1 1 0 0 0

3  1 1 0 0 1 0 1 1

4  0 1 0 0 1 0 0 0

5  0 1 1 1 0 1 0 0

6  0 0 0 0 1 0 0 0

7  0 0 1 0 0 0 0 1

8  0 0 1 0 0 0 1 0

n = |V | , m = |E |



Representing Graphs (Review)
Option 1a: Adjacency matrix.

•  matrix where  if 


• Space _____?


• Checking if  takes _____ time?

n-by-n A[u][v] = 1 (u, v) ∈ E

(u, v) ∈ E

   1 2 3 4 5 6 7 8

1  0 1 1 0 0 0 0 0

2  1 0 1 1 1 0 0 0

3  1 1 0 0 1 0 1 1

4  0 1 0 0 1 0 0 0

5  0 1 1 1 0 1 0 0

6  0 0 0 0 1 0 0 0

7  0 0 1 0 0 0 0 1

8  0 0 1 0 0 0 1 0

O(1)

O(n2)

n = |V | , m = |E |



Representing Graphs (Review)
Option 1b: Adjacency list.

• Array of lists, where each list stores the neighbors of a given 
node

1 3 2

2

3

4 5

5

6

7 3 8

8

1 3 5

2 1 5 87

2 3 4 6

5

3 7

2

4

n = |V | , m = |E |

One list per vertex . 
List  contains ’s neighbors

vi ∈ V
i vi



Representing Graphs (Review)
Option 1b: Adjacency list.

• Array of lists, where each list stores the neighbors of a given 
node


• Space ________?


• Checking if  takes _____________ time?(u, v) ∈ E

O(n + m)

O(degree(u))

1 3 2
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n = |V | , m = |E |



Graph Terminology (Review)
• A walk in an undirected graph  is a sequence of vertices 

  such that every consecutive pair . 


• A walk is path if all vertices are distinct (no repeats!).


• The length of a path is the number of edges on the path 

• An undirected graph is connected if for every pair of nodes  and , there is 
a path between  and  (e.g., every node is reachable from all other nodes)


• A connected component is the set of all vertices/edges reachable from 
some vertex 


• A connected graph has 1 connected component. 

• A cycle is a walk  where  and where no other vertices 
repeat

G = (V, E)
u1, u2, …, uk (ui−1, ui) ∈ E

u v
u v

v

u1, u2, …, uk u1 = uk



Trees (Review)
An undirected graph is a tree if it is connected and acyclic (i.e, it does 
not contain a cycle)


Lemma. Let  be an undirected graph with  nodes. Then any two of 
these conditions imply the third 


• G is connected


• G does not contain a cycle


• G has  edges

G n

n − 1



Graph Traversals
A few common questions we ask about a graph  :


• Connectivity.  How do we verify if a graph is connected?


• Reachability.  Given , is there a path between them?

G = (V, E)

s, t ∈ V

Answers can be determined by “traversing the graph”


• Two classic graph traversal algorithms:


• Breadth-first search (BFS)


• Depth-first search (DFS) 
 

• BFS & DFS are remarkably similar algorithms that differ in the 
data structure used

Start at some node and 
radiate outward

Start at some node and 
keep going until you hit 

a dead end



Breadth-first Search
Explore outwards in all possible directions from starting point, peeling 
“one layer after another”


• BFS algorithm: Initialize 


• 

• all nodes that do not belong to  or  that are adjacent 

to a node in 

• 

•  all nodes that do not belong an earlier layer that are 

adjacent to a node in 

L0 = {v}
L1 = all neighbors of L0
L2 = L0 L1

L1
…
Li+1 =

Li

v L1 L2 Ln–1



BFS Implementation
We need data structures to represent:


• Nodes that we have not encountered yet 


• Nodes that we have encountered but not yet “explored”


• Nodes that have been “fully explored” (encountered all its neighbors 
as well)


 

v L1 L2 Ln–1



BFS Implementation
Suppose we are currently exploring node 


• Its neighbors will be marked “encountered”, but when will they be 
explored compared to other encountered but unexplored nodes?


• BFS Idea: Explore all nodes at level  (same distance from initial 
node) before moving on to level 


• Rule: first encountered node should be first node to be explored


• Which data structure should we use?


• Queue! First-in-first-out

u

i
i + 1

v L1 L2 Ln–1



BFS Implementation: Queue

Observations:

• Nodes that we have not encountered have never been added to Q


• When a node  is marked (after extraction from Q), all ’s neighbors are then 
enqueued, so the next time we see  we can ignore it —its already been 
explored!


• We may enqueue some nodes multiple times, but we only explore them once 
(if a marked node is extracted, it is skipped)

u u
u

BFS (G, s):
 Set status of all nodes to unmarked
Place s into the queue Q
While Q is not empty

Extract v from Q
If v is unmarked
Mark v
For each edge (v, w):
  Put w into the queue Q



BFS Example

1

2

3

5

7 6

4



Tracing the Traversal: BFS Tree
• We can remember parent nodes (the node at level  that lead us to 

a given node at level )

• Keeping track of these relationships produces a tree rooted at 


BFS-Tree(G, s):
Put (∅, s) in the queue Q
While Q is not empty

Extract (p, v) from Q
If v is unmarked

Mark v
parent(v) = p
For each edge (v, w):
  Put (v, w) into the queue Q      (*)

i
i + 1

s



BFS Analysis
• Inserting and extracting an edge from a queue: _____ time


• For each marked node , we run the for loop for its edges: _____ times


• Overall running time? ______


• Can we tighten our analysis?


• Yes! We can improve our analysis to 


• Node  has  incident edges 


•
Total time processing edges:  

v

O(n + m)
u degree(u) (u, v)

∑
u∈V

degree(u) = 2m

each edge (u, v) is counted exactly twice  
in sum: once in degree(u) and once in degree(v)

O(1)
O(n)

O(n2)



Depth-First Search



Stack Instead of Queue
If we change how we store the visited vertices (the data structure we 
use), it changes how we traverse the graph


BFS (G, s):
 Set status of all nodes to unmarked
Place s into the queue Q
While Q is not empty

Extract v from Q
For each edge (v, w):
  If w is unmarked
      Put w into the queue Q



Stack Instead of Queue
If we change how we store the visited vertices (the data structure we 
use), it changes how we traverse the graph


DFS (G, s):
Set status of all nodes to unmarked
Place s into the stack S
While S is not empty

Extract v from S
For each edge (v, w):
  If w is unmarked
      Put w into the stack S



Depth-First Search: Recursive
DFS is perhaps the more natural traversal algorithm to write.


• Can be written iteratively or recursively


• Both DFS versions are the same; can actually see the “recursion 
stack” in the iterative version

Recursive-DFS(u):   
   Set status of u to marked # encountered u
   for each edge (u, v):
      if v's status is unmarked:
         DFS(v)
   # done exploring neighbors of u



Example Graph 



DFS Running Time
We can apply the same analysis as we did for BFS.


• Inserts and extracts to a stack:  time 


• Setting status of each node to unmarked: 


• Each node is set marked at most once; equivalently DFS  is 
called at most once for each node


• For every node , explore  edges


•



• Overall, running time 

O(1)
O(n)

(u)

v degree(v)

∑
v

degree(v) = 2m

O(n + m)



DFS returns a spanning tree, similar to BFS

DFS-Tree(G, s):
Put (∅, s) in the stack S
While S is not empty

Extract (p, v) from S
If v is unmarked

Mark v
parent(v) = p
For each edge (v, w):
  Put (v, w) into the stack S

Depth-First Search Tree

The spanning tree formed by parent edges in a DFS are usually long 
and skinny



Proving Correctness



DFS Correctness
• DFS finds precisely the set of nodes reachable from start node 


• That is, DFS( ) marks node  iff node  is reachable from 


• Proof.  


• Since  is marked, ) is an edge in the graph


• Claim.     leads to 


• Induction on the sequence of vertices marked by DFS


• Let  denote the order in which vertices are 
marked,  suppose claim holds all vertices with index less than 


• Consider :  parent  must be discovered before , and thus 
the claim holds for it, since ( ) is an edge, we have a 
path from  to 

s
s x x s

( ⇒ )
x (x, parent(x))
x → parent(x) → parent(parent(x)) → ⋯ s

u1, u2, …, uk, …, un
k

uk (uk) uk
uk, parent(uk)

uk s



DFS Correctness
• DFS finds precisely the set of nodes reachable from start node 


• That is, DFS( ) marks node  iff node  is reachable from 


• Proof.  


• Suppose node  is reachable from  via path , but  is not 
marked by DFS


• Since  is marked by DFS and  is not, there must be a first node 
 on  that is not marked by DFS


• Thus, there is an edge  such that  is marked and  is 
not marked


• But this cannot happen, since when  is marked, all its 
neighbors are also marked 

s
s x x s

( ⇐ )
x s P x

s x
v P

(u, v) ∈ P u v

u
⇒ ⇐ ∎



BFS Correctness
• Breadth first search finds precisely the set of nodes reachable from 


• That is, BFS( ) marks node  iff node  is reachable from 


• Proof.  


• Since  is marked, ) is an edge in the graph


• Claim.     leads to 


• Induction on the sequence of vertices marked by BFS


• Let  denote the order in which vertices are 
marked,  suppose claim holds all vertices with index less than 


• Consider :  parent  must be discovered before , and thus 
the claim holds for it, since ( ) is an edge, we have 
a path from  to 

s
s x x s

( ⇒ )
x (x, parent(x))
x → parent(x) → parent(parent(x)) → ⋯ s

u1, u2, …, uk, …, un
k

uk (uk) uk
uk, parent(uk)

uk s



BFS Correctness
• Breadth first search finds precisely the set of nodes reachable from 


• That is, BFS( ) marks node  iff node  is reachable from 


• Proof.  


• Suppose node  is reachable from  via path , but  is not 
marked by BFS


• Since  is marked by BFS and  is not, there must be a first node 
 on  that is not marked by BFS


• Thus, there is an edge  such that  is marked and  is 
not marked


• But this cannot happen, since when  is marked, all its 
neighbors are also marked 

s
s x x s

( ⇐ )
x s P x

s x
v ≠ s P

(u, v) ∈ P u v

u
⇒ ⇐ ∎


