
Largest Subinterval Sum &
Asymptotic Analysis

Outline

• Look at a fun problem (Largest Subinterval Sum)

• Iteratively develop more efficient solutions

• Prove some things to help us get there

• Take a step back and state precisely what we

mean by efficiency

• Practice some asymptotic analysis

• Review helpful log manipulation tricks

Largest Subinterval Sum

INPUT: An array of integers (1-indexed)

OUTPUT: The largest sum of any subinterval. The empty
interval (which we will represent as) has sum .

A n

NULL 0

Example 1: Consider the array (10,20, − 50,40)
Subinterval [1, 1] = 10
Subinterval [1,4] = 10+20-50+40 = 20
Subinterval [2, 3] = 20-50 = -30

The largest subinterval sum is , corresponding to 40 [4,4]

Largest Subinterval Sum

INPUT: An array of integers (1-indexed)

OUTPUT: The largest sum of any subinterval. The empty
interval (which we will represent as) has sum .

A n

NULL 0

Example 2: Consider the array (−2,3, − 2,4, − 1,8, − 20)

The largest subinterval sum is , corresponding to 12 [2,6]

Largest Subinterval Sum

INPUT: An array of integers (1-indexed)

OUTPUT: The largest sum of any subinterval. The empty
interval (which we will represent as) has sum .

A n

NULL 0

Question: Is this problem interesting when the array’s
integers are all positive?

No! Then the answer is always the entire interval…

Developing an Algorithm

Algorithm with StepsO(n3)
• Let’s start with an algorithm that corresponds directly to

the problem definition:

• We are looking for the largest sum of any sub-interval

• How many total sub-intervals are there?

• which is

• How long does it take to sum a sub-interval?

• (in the worst case, must sum entire array)

(n
2) n(n + 1)

2
= O(n2)

O(n)

This brute-force algorithm takes stepsO(n3)

LargestSum(A):
largest ← 0
for i ← 1…n

largest ← max(sum, largest)

return largest

for j ← i…n

sum ← sum + A[k]

sum ← 0
for k ← i…j

Try walking through LargestSum(A) on a

small example, like A = (10,20, − 50,40)

Algorithm with StepsO(n2)
• The last algorithm repeated a lot of work. How?

• If had 7 integers, interval computed
, , , and so on…

• Can we avoid this repeated work?

A [2,7]
[2,2] [2,3] [2,4]

Idea: Compute and reuse a Partial Sum table

PS(j) =
j

∑
i=1

A(i)

Algorithm with StepsO(n2)

-2 3 -2 4 -1 8 -20A
-2 1 -1 3 2 10 -100PS

PS(j) =
j

∑
i=1

A(i)
 contains sum of all integers “up until

”, with a for the empty array.
PS[i]

A[i] 0

Claim: We can use to compute the sum of
any interval in time. How?

PS
(i, j) O(1)

Algorithm with StepsO(n2)

-2 3 -2 4 -1 8 -20

-2 1 -1 3 2 10 -100

A
PS

PS(j) =
j

∑
i=1

A(i)

Example: How to compute ?A(3,6)

101

 is everything before PS[2] A[3] is everything up to PS[6] A[6]

Subtract PS[j] − PS[i − 1]

LargestSum(A):
largest ← 0
for i ← 1…n

largest ← max(largest, PS[j] − PS[i − 1])
return largest

for j ← i…n

 // we can construct this in O(n) timePS ← partial_sums(A)

Each iteration performs workO(1)

 iterationsO(n2)

Total cost: O(n2)

Can We Do Even Better?

Algorithm with StepsO(n)
Let give the partial sum of the first integer values of .  

 
Let’s visualize an example

PS(j) =
j

∑
i=1

A[i] j A

PS(j)

 is positiveA[i]

 is negativeA[j]

In this example, 
 never dips below 0PS

Algorithm with StepsO(n)
Observation 1: If for all then
the largest sum subinterval is the interval where
 maximizes .

PS(j) ≥ 0 1 ≤ j ≤ n
[1,k]

k PS(k)

Proof. The proof is by contradiction.

Suppose did not give the largest sum. Then there
is some other interval that has a larger sum. But
shifting to cannot decrease the sum (since we
would then be subtracting out 0), and shifting to
cannot decrease the sum (since maximizes).
Thus cannot be an interval with a larger sum.

[1,k]
[u, v]

u 1
v k

k PS(k)
[u, v]

Algorithm with StepsO(n)
Let give the partial sum of the first integer values of .  

 
Let’s visualize a second example :

PS(j) =
j

∑
i=1

A[i]) j A

PS(j)

 dips below 0PS

Algorithm with StepsO(n)
Observation 2: When falls below for the first
time, then the largest sum subinterval never includes
—it falls on one side or the other. That is, when

 falls below for the first time, the problem
essentially “resets” with being “the new ”.

PS(j) 0

j
PS(j) 0

PS(j) 0

Proof. The proof is by contradiction.

Suppose the largest sum subinterval contains the
first point where the partial sum drops below . Notice
that corresponds to a negative sum. The interval

 must be larger than since we are
subtracting out a negative sum. This is a contradiction.

[u, v]
j 0

[u, j]
[j + 1,v] [u, v]

LargestSum(A):
sum, largest ← 0
for i ← 1…n

sum ← max(sum + A[i],0)
largest ← max(sum, largest)

return largest

This algorithm follows from our previous two observations.

• We only need to worry about sums corresponding to intervals

where is a new “0-point” for the partial sum and maximizes
the partial sum

• Going back to our visualization, we are calculating the largest
difference between some valley and a subsequent peak

O(n)

i j

Reflecting on our Algorithms

We proposed and analyzed three algorithms that find
the largest subinterval sum problem

• All three algorithms are correct

• When given the same input, not all three algorithms

will complete in the same number of steps 

The type of analysis we did is called asymptotic
analysis, and it’s something we’ll do throughout the
rest of this course

Analysis and Asymptotics

Why should we examine problems analytically?

• Analysis is independent of the algorithm’s

implementation, the language the program is written in,
and the hardware on which the program is run

• Theoretical efficiency almost always implies a path
towards practical efficiency

• When there is a mismatch between a theoretical

model’s predictions and the observed performance,
there is an interesting systems problem to be solved!

My research group relies on this!

Analysis and Asymptotics

Why use worst-case analysis?

• Worst-case is a real guarantee.

• Worst-case captures efficiency reasonably well in

practice. Exceptions are rare (e.g., Quicksort) and
interesting.

• Average case is hard to quantify—we often don’t
know the true distribution of inputs, so what are we
analyzing the average of?

Analysis and Asymptotics

• What does efficient actually mean?

• We will say an algorithm is efficient if it runs in time

that is polynomial in the size of the input

• Practical efficiency probably maxes out somewhere

between and , depending on the
context

• Not brute force!

O(n log n) O(n3)

Analysis and Asymptotics

• Why use asymptotic analysis?

• Precise bounds are difficult to calculate

• Precise runtime is dependent on external factors, often

including things we don’t consider or can’t control
(hardware, OS environment, compiler, …)

• We often want to compare algorithms, and equivalency
up to constant factors is often the right level of detail to
have those conversations

• Once we pick an efficient algorithm, we can optimize

the “practical considerations” during its implementation

Asymptotic Analysis

Big-O

Definition (Asymptotic upper bounds): is if and
only if there exist constants and such that for all

, we have

f(n) O(g(n))
c > 0 n0 ≥ 0

n ≥ n0 f(n) ≤ c ⋅ g(n)

c · g(n)

nn0

f(n)

Big-O

Definition (Asymptotic upper bounds): is if and
only if there exist constants and such that for all

, we have

f(n) O(g(n))
c > 0 n0 ≥ 0

n ≥ n0 f(n) ≤ c ⋅ g(n)

Example: f(n) = 3n2 + 17n + 8

= 28n2

≤ 3n2 + 17n2 + 8n2 For n ≥ 1

Choosing and means is c = 28 n0 = 1 f(n) O(n2)

 
 
Let . Which of the following are true? 

A. is . 

B. is . 

C. Both A and B. 

D. Neither A nor B.

f(n) = 3n2 + 17n log2 n + 1000

f(n) O(n2)

f(n) O(n3)

Concept Check

Big-Omega

Definition (Asymptotic lower bounds): is if and
only if there exists constants and such that for all

, we have

f(n) Ω(g(n))
c > 0 n0 ≥ 0

n ≥ n0 f(n) ≥ c ⋅ g(n)

f(n)

nn0

c · g(n)

Big-Omega

Definition (Asymptotic lower bounds): is if and
only if there exists constants and such that for all

, we have

f(n) Ω(g(n))
c > 0 n0 ≥ 0

n ≥ n0 f(n) ≥ c ⋅ g(n)

Example: f(n) = 3n2 + 17n + 8
≥ 3n2 For n ≥ 0

Choosing and means is c = 1 n0 = 0 f(n) Ω(n2)

 
 
Let . Which of the following are true? 

A. is . 

B. is . 

C. Both A and B. 

D. Neither A nor B.

f(n) = 3n2 + 17n log2 n + 1000

f(n) Ω(n2)

f(n) Ω(n3)

Concept Check

Big-Theta

Definition (Asymptotic tight bounds): is if and
only if is and  

Equivalently, if there exist constants and such
that for all

f(n) Θ(g(n))
f(n) O(g(n)) Ω(g(n))

c1 > 0, c2 > 0, n0 ≥ 0
0 ≤ c1 ⋅ g(n) ≤ f(n) ≤ c2 ⋅ g(n) n ≥ n0 .

Ideally, we’d strive for a “tight” bounds
whenever we can!

Big Oh- Notational Abuses
• is actually a set of functions, but the CS community writes

 instead of

• For example

•

•

• But

• Okay to abuse notation in this way

O(g(n))
f(n) = O(g(n)) f(n) ∈ O(g(n))

f1(n) = O(n log n) = O(n2)

f2(n) = O(3n2 + n) = O(n2)
f1(n) ≠ f2(n)

c · g(n)

nn0

f(n)

Growth of Functions

Playing with Logs: Properties
• In this class, means ,

• Constant base doesn’t matter for big-O:

• Useful properties of logs:

•

•

•

log n log2 n ln n = loge n

logb(n) =
log n
log b

= O(log n)

log(nm) = m log n
log(ab) = log a + log b
log(a/b) = log a − log b

Exponents

na ⋅ nb = na+b

(na)b = nab

aloga n = n
We will use this a lot!

Comparing Running Times
• When comparing two functions, helpful to simplify first

• Is = ? 
 

• Is = ? 
 

• Is

n1/log n O(1)

log 4n O(n2)

n = O(2log4 n)?

Comparing Running Times
• When comparing two functions, helpful to simplify first

• Is = ?

• Simplify : True  

• Is =

• Simplify : True  

• Is

• Simplify : False

n1/log n O(1)

n1/log n = (2log n)1/log n = 2

log 4n O(n2)

log 22n = log 2n = n log 2 = O(n)

n = O(2log4 n)?

2log4 n = 2
log2 n
log24 = 2(log2 n)/2 = 2log2 n = n

• We can use limits to show asymptotic bounds

•  

• for some constant , 

then

If lim
n→∞

f(x)
g(x)

= 0, then f(x) = O(g(x))

If lim
n→∞

f(x)
g(x)

= c 0 < c < ∞

f(x) = Θ(g(x))

Tools for Comparing Asymptotics

Tools for Comparing Asymptotics
• Logs grow more slowly than any polynomial:

• for every

• Exponentials grow faster than any polynomial:

• for every

• Taking logs is often useful for comparing function growth

• Since is a strictly increasing function for ,
 implies

• E.g. Compare vs

• Taking log of both, we get: vs

loga n = O(nb) a > 1, b > 0

nd = O(rn) d > 1, r > 0

log x x > 0
log(f(n)) < log(g(n)) f(n) < g(n)

3log n 2n

log n log 3 n

But BEWARE: when comparing logs, the constants matter!

