
Largest Subinterval Sum & 
Asymptotic Analysis



Outline

• Look at a fun problem (Largest Subinterval Sum)

• Iteratively develop more efficient solutions


• Prove some things to help us get there

• Take a step back and state precisely what we 

mean by efficiency

• Practice some asymptotic analysis

• Review helpful log manipulation tricks



Largest Subinterval Sum

INPUT: An array  of  integers (1-indexed)


OUTPUT: The largest sum of any subinterval. The empty 
interval (which we will represent as ) has sum .

A n

NULL 0

Example 1:   Consider the array (10,20, − 50,40)
Subinterval [1, 1] = 10
Subinterval [1,4] = 10+20-50+40 = 20
Subinterval [2, 3] = 20-50 = -30

The largest subinterval sum is , corresponding to 40 [4,4]



Largest Subinterval Sum

INPUT: An array  of  integers (1-indexed)


OUTPUT: The largest sum of any subinterval. The empty 
interval (which we will represent as ) has sum .

A n

NULL 0

Example 2:   Consider the array (−2,3, − 2,4, − 1,8, − 20)

The largest subinterval sum is , corresponding to 12 [2,6]



Largest Subinterval Sum

INPUT: An array  of  integers (1-indexed)


OUTPUT: The largest sum of any subinterval. The empty 
interval (which we will represent as ) has sum .

A n

NULL 0

Question: Is this problem interesting when the array’s 
integers are all positive?

No! Then the answer is always the entire interval…



Developing an Algorithm



Algorithm with  StepsO(n3)
• Let’s start with an algorithm that corresponds directly to 

the problem definition:

• We are looking for the largest sum of any sub-interval


• How many total sub-intervals are there?


•  which is 


• How long does it take to sum a sub-interval?

•  (in the worst case, must sum entire array)

(n
2) n(n + 1)

2
= O(n2)

O(n)

This brute-force algorithm takes  stepsO(n3)



LargestSum(A):
largest ← 0
for i ← 1…n

largest ← max(sum, largest)

return largest

for j ← i…n

sum ← sum + A[k]

sum ← 0
for k ← i…j

Try walking through LargestSum(A) on a

small example, like A = (10,20, − 50,40)



Algorithm with  StepsO(n2)
• The last algorithm repeated a lot of work. How?


• If  had 7 integers, interval  computed 
, , , and so on…


• Can we avoid this repeated work?

A [2,7]
[2,2] [2,3] [2,4]

Idea: Compute and reuse a Partial Sum table

PS( j) =
j

∑
i=1

A(i)



Algorithm with  StepsO(n2)

-2 3 -2 4 -1 8 -20A
-2 1 -1 3 2 10 -100PS

PS( j) =
j

∑
i=1

A(i)
 contains sum of all integers “up until 

”, with a  for the empty array.
PS[i]

A[i] 0

Claim: We can use  to compute the sum of 
any interval  in  time. How?

PS
(i, j) O(1)



Algorithm with  StepsO(n2)

-2 3 -2 4 -1 8 -20

-2 1 -1 3 2 10 -100

A
PS

PS( j) =
j

∑
i=1

A(i)

Example: How to compute ?A(3,6)

101

 is everything before PS[2] A[3]  is everything up to PS[6] A[6]

Subtract PS[ j] − PS[i − 1]



LargestSum(A):
largest ← 0
for i ← 1…n

largest ← max(largest, PS[ j] − PS[i − 1])
return largest

for j ← i…n

       // we can construct this in O(n) timePS ← partial_sums(A)

Each iteration performs  workO(1)

 iterationsO(n2)

Total cost: O(n2)



Can We Do Even Better?



Algorithm with  StepsO(n)
Let  give the partial sum of the first  integer values of .  

 
Let’s visualize an example 

PS( j) =
j

∑
i=1

A[i] j A

PS( j)

 is positiveA[i]

 is negativeA[ j]

In this example, 
 never dips below 0PS



Algorithm with  StepsO(n)
Observation 1: If  for all  then 
the largest sum subinterval is the interval  where 
 maximizes .

PS( j) ≥ 0 1 ≤ j ≤ n
[1,k]

k PS(k)

Proof. The proof is by contradiction.

Suppose   did not give the largest sum. Then there 
is some other interval  that has a larger sum. But 
shifting  to  cannot decrease the sum (since we 
would then be subtracting out 0), and shifting  to  
cannot decrease the sum (since   maximizes ). 
Thus  cannot be an interval with a larger sum.

[1,k]
[u, v]

u 1
v k

k PS(k)
[u, v]



Algorithm with  StepsO(n)
Let  give the partial sum of the first  integer values of .  

 
Let’s visualize a second example :

PS( j) =
j

∑
i=1

A[i]) j A

PS( j)

 dips below 0PS



Algorithm with  StepsO(n)
Observation 2: When  falls below  for the first 
time, then the largest sum subinterval never includes 
—it falls on one side or the other. That is, when 

 falls below  for the first time, the problem 
essentially “resets” with  being “the new ”.

PS( j) 0

j
PS( j) 0

PS( j) 0

Proof. The proof is by contradiction.

Suppose the largest sum subinterval  contains the 
first point  where the partial sum drops below . Notice 
that  corresponds to a negative sum. The interval 

 must be larger than  since we are 
subtracting out a negative sum. This is a contradiction.

[u, v]
j 0

[u, j]
[ j + 1,v] [u, v]



LargestSum(A):
sum, largest ← 0
for i ← 1…n

sum ← max(sum + A[i],0)
largest ← max(sum, largest)

return largest

This  algorithm follows from our previous two observations.

• We only need to worry about sums corresponding to intervals 

where  is a new “0-point” for the partial sum and  maximizes 
the partial sum


• Going back to our visualization, we are calculating the largest 
difference between some valley and a subsequent peak

O(n)

i j



Reflecting on our Algorithms

We proposed and analyzed three algorithms that find 
the largest subinterval sum problem

• All three algorithms are correct

• When given the same input, not all three algorithms 

will complete in the same number of steps 

The type of analysis we did is called asymptotic 
analysis, and it’s something we’ll do throughout the 
rest of this course



Analysis and Asymptotics

Why should we examine problems analytically?

• Analysis is independent of the algorithm’s 

implementation, the language the program is written in, 
and the hardware on which the program is run


• Theoretical efficiency almost always implies a path 
towards practical efficiency

• When there is a mismatch between a theoretical 

model’s predictions and the observed performance, 
there is an interesting systems problem to be solved!

My research group relies on this!



Analysis and Asymptotics

Why use worst-case analysis?

• Worst-case is a real guarantee.

• Worst-case captures efficiency reasonably well in 

practice. Exceptions are rare (e.g., Quicksort) and 
interesting.


• Average case is hard to quantify—we often don’t 
know the true distribution of inputs, so what are we 
analyzing the average of?



Analysis and Asymptotics

• What does efficient actually mean?

• We will say an algorithm is efficient if it runs in time 

that is polynomial in the size of the input

• Practical efficiency probably maxes out somewhere 

between  and  , depending on the 
context


• Not brute force!

O(n log n) O(n3)



Analysis and Asymptotics

• Why use asymptotic analysis?

• Precise bounds are difficult to calculate

• Precise runtime is dependent on external factors, often 

including things we don’t consider or can’t control 
(hardware, OS environment, compiler, …) 


• We often want to compare algorithms, and equivalency 
up to constant factors is often the right level of detail to 
have those conversations

• Once we pick an efficient algorithm, we can optimize 

the “practical considerations” during its implementation





Asymptotic Analysis



Big-O

Definition (Asymptotic upper bounds):  is  if and 
only if there exist constants  and  such that for all 

, we have 


f(n) O(g(n))
c > 0 n0 ≥ 0

n ≥ n0 f(n) ≤ c ⋅ g(n)

c · g(n)

nn0

f(n)



Big-O

Definition (Asymptotic upper bounds):  is  if and 
only if there exist constants  and  such that for all 

, we have 


f(n) O(g(n))
c > 0 n0 ≥ 0

n ≥ n0 f(n) ≤ c ⋅ g(n)

Example: f(n) = 3n2 + 17n + 8

= 28n2

≤ 3n2 + 17n2 + 8n2 For  n ≥ 1

Choosing  and   means  is   c = 28 n0 = 1 f(n) O(n2)



 
 
Let . Which of the following are true? 

A.   is . 

B.   is . 

C.  Both A and B. 

D.  Neither A nor B.

f(n) = 3n2 + 17n log2 n + 1000

f(n) O(n2)

f(n) O(n3)

Concept Check



Big-Omega

Definition (Asymptotic lower bounds):  is  if and 
only if there exists constants  and  such that for all 

, we have 


f(n) Ω(g(n))
c > 0 n0 ≥ 0

n ≥ n0 f(n) ≥ c ⋅ g(n)

f(n)

nn0

c · g(n)



Big-Omega

Definition (Asymptotic lower bounds):  is  if and 
only if there exists constants  and  such that for all 

, we have 


f(n) Ω(g(n))
c > 0 n0 ≥ 0

n ≥ n0 f(n) ≥ c ⋅ g(n)

Example: f(n) = 3n2 + 17n + 8
≥ 3n2 For  n ≥ 0

Choosing  and   means  is   c = 1 n0 = 0 f(n) Ω(n2)



 
 
Let . Which of the following are true? 

A.   is . 

B.   is . 

C.  Both A and B. 

D.  Neither A nor B.

f(n) = 3n2 + 17n log2 n + 1000

f(n) Ω(n2)

f(n) Ω(n3)

Concept Check



Big-Theta

Definition (Asymptotic tight bounds):  is  if and 
only if  is  and  

Equivalently, if there exist constants  and  such 
that  for all 

f(n) Θ(g(n))
f(n) O(g(n)) Ω(g(n))

c1 > 0, c2 > 0, n0 ≥ 0
0 ≤ c1 ⋅ g(n) ≤ f(n) ≤ c2 ⋅ g(n) n ≥ n0 .

Ideally, we’d strive for a “tight” bounds 
whenever we can!



Big Oh- Notational Abuses
•  is actually a set of functions, but the CS community writes 

 instead of 


• For example


• 


• 


• But 


• Okay to abuse notation in this way

O(g(n))
f(n) = O(g(n)) f(n) ∈ O(g(n))

f1(n) = O(n log n) = O(n2)

f2(n) = O(3n2 + n) = O(n2)
f1(n) ≠ f2(n)

c · g(n)

nn0

f(n)



Growth of Functions





Playing with Logs: Properties
• In this class,  means , 


• Constant base doesn’t matter for big-O: 

 


• Useful properties of logs:


•  


• 


•

log n log2 n ln n = loge n

logb(n) =
log n
log b

= O(log n)

log(nm) = m log n
log(ab) = log a + log b
log(a/b) = log a − log b

Exponents

na ⋅ nb = na+b

(na)b = nab

aloga n = n
We will use this a lot!



Comparing Running Times
• When comparing two functions, helpful to simplify first


• Is  = ? 
 

• Is  =  ? 
 

• Is 

n1/log n O(1)

log 4n O(n2)

n = O(2log4 n)?



Comparing Running Times
• When comparing two functions, helpful to simplify first


• Is  = ?


• Simplify  :  True  

• Is  =  


• Simplify  :  True  

• Is 


• Simplify  : False

n1/log n O(1)

n1/log n = (2log n)1/log n = 2

log 4n O(n2)

log 22n = log 2n = n log 2 = O(n)

n = O(2log4 n)?

2log4 n = 2
log2 n
log24 = 2(log2 n)/2 = 2log2 n = n



• We can use limits to show asymptotic bounds


•  

•  for some constant , 

then 

If  lim
n→∞

f(x)
g(x)

= 0, then f(x) = O(g(x))

If  lim
n→∞

f(x)
g(x)

= c 0 < c < ∞

f(x) = Θ(g(x))

Tools for Comparing Asymptotics 



Tools for Comparing Asymptotics 
• Logs grow more slowly than any polynomial: 


•  for every 


• Exponentials grow faster than any polynomial: 


•  for every  


• Taking logs is often useful for comparing function growth


• Since  is a strictly increasing function for , 
 implies 


• E.g. Compare  vs   


• Taking log of both, we get:  vs 

loga n = O(nb) a > 1, b > 0

nd = O(rn) d > 1, r > 0

log x x > 0
log( f(n)) < log(g(n)) f(n) < g(n)

3log n 2n

log n log 3 n

But BEWARE:  when comparing logs, the constants matter!


