
Networked File System
CS333

Williams College

This Video

NFS: Network File System
• Statelessness vs. statefulness?

• What is idempotency and why are idempotent operations

desirable?

• Who caches what, and what are the implications?

• What consistency guarantees does NFS give to clients?

• What happens when an NFS client crashes? An NFS

server?

NFS v2: High-level idea

• Clients connect to an NFS server over a network
• Each client’s local VFS operations are translated into

a series of network requests
• The server receives requests, makes corresponding

changes to its local file system, and sends responses
back to clients

• Can be the acknowledgement of a successful write, data from
a read request, an error, etc.

The fact that NFS uses the client-server model is
transparent to client applications: they think they are
running on a local FS

NFS Big Picture

VFS

NFS 
client

Local

FSes

RPC 
client stub

VFS

NFS 
server

Local

FSes

RPC 
server stub

Local Application
user
kernel

user
kernel

Client Server

NFS Big Picture: CS Dept. Server

/

faculty/

jannen/

www/ cs333/

lectures/ exams/index.html

courses/

cs134/ cs432/

/dev/sda1 on /

/dev/sda2 on /courses/

NFS servers export subtrees to clients.

/etc/exports contains nfs server settings:

• /faculty/jannen exported RW to userid:jannen on
dexter.cs.williams.edu, speckle.cs.williams.edu, …

• /courses/exported RW to userid:jannen on
dexter.cs.williams.edu, speckle.cs.williams.edu, …

• /students/09mci3/exported RW to userid:09mci3 on
dexter.cs.williams.edu, speckle.cs.williams.edu, …

/dev/sda3 on /faculty/

/dev/sda4 on /students/

students/

09wkj1/ 09mci3/ …/

http://dexter.cs.williams.edu
http://speckle.cs.williams.edu
http://dexter.cs.williams.edu
http://speckle.cs.williams.edu
http://dexter.cs.williams.edu
http://speckle.cs.williams.edu

NFS Big Picture: CS Lab Client

/

home/ usr/bin/ var/courses/

/dev/sda1 on /

jannen/

www/ cs333/

lectures/ exams/index.html

nfs on /home/jannen/

Clients mount nfs volumes into their FS namespace

cs134/ cs432/

nfs on /courses/

courses/

NFSv2 Statelessness

POSIX is stateful, NFSv2 is stateless
• What challenges does this bring? 

An NFSv2 server has no notion of a “connection”
• The client bundles all necessary “state” into each message

‣NFS file handle stores volume, inode #, generation #

• The server can then view each client message in isolation

‣ If a client disconnects, the server does not know or care
‣ If the server crashes, the client does not lose any relied-upon state

• Statelessness makes recovery and error-handling easier

NFSv2 Statelessness

Idempotent operations
• An operation is idempotent if performing the operation

multiple times has the same effect as performing it once

‣Many POSIX system calls are not idempotent:
‣ read(fd, buf, nbytes), write(fd, buf, nbytes), lseek(fd, offset, SEEK_CUR), etc.
‣By specifying the starting offset with each read/write, many operations

can be made idempotent
‣ Notable exceptions?
‣ mkdir fails if the file exists

Idempotency simplifies the protocol considerably
• If a message is dropped, send it again

• If the server crashes, clients can resend all

unacknowledged operations

Caching: Who and What?

Network round trips are expensive, so clients would
like to cache data locally
• Satisfy reads from cache, rather than pay for read+RTT

• Buffer writes locally, and send updates in large messages

There are challenges to client-side caching: multiple
clients can’t share data effectively without coordination
• NFSv2 is supposed to appear as a local FS

• When is local cache stale w.r.t. server?

• When should you push your updates to server?

NFSv2 solutions:
• Flush-on-close / close-to-open consistency

• Attribute cache

Close-to-open Consistency

TimeF F’

F

F’’

F’

F F’’

Client A

Client B

1.) Client A makes changes to F 
and saves them to the server

2.) Client B makes changes to F 
and saves them to the server

Attribute Cache

NFS sends GETATTR requests to check the validity
of its cache
• The result indicates whether or not the server has a more

recent version of the file than the client’s cached version.

Problem: GETATTR messages can flood the
network just to confirm the common case
Clients often issue GETATTR requests every N
seconds
• This reduces GETATTR traffic to a (tunable) volume

• This also bounds the cache’s staleness, but introduces a

window of vulnerability

NFS is an Evolving Protocol

NFS has evolved over many years:
• NFS v1: internal SUN protocol

• NFS v2: 1989

• NFS v3: 1995

• NFS v4: 2000

• NFS v4.1: 2010

• NFS v4.2: 2016

What’s changed?
• Statelessness has given way to statefulness in NFSv4

‣The “purity” of the v2 design has eroded in favor of performance &

security

Takeaways

NFS fills a very common need: efficient access to
shared files on a reliable, low-latency network
Building a stateless protocol that implements a
stateful API adds challenges
• Caching helps performance but creates coordination

challenges

‣Close-to-open consistency
‣Attribute caching

• Idempotent operations simplify the protocol by bundling
state with each request

‣This also simplifies the recovery process:
‣ If a message is lost, send it again
‣ If the server crashes, clients can resend all unacknowledged requests

