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This Video

NFS: Network File System 
• Statelessness vs. statefulness?

• What is idempotency and why are idempotent operations 

desirable?

• Who caches what, and what are the implications?

• What consistency guarantees does NFS give to clients?

• What happens when an NFS client crashes? An NFS 

server?



NFS v2: High-level idea

• Clients connect to an NFS server over a network  
• Each client’s local VFS operations are translated into 

a series of network requests 
• The server receives requests, makes corresponding 

changes to its local file system, and sends responses 
back to clients 

• Can be the acknowledgement of a successful write, data from 
a read request, an error, etc.


The fact that NFS uses the client-server model is 
transparent to client applications: they think they are 
running on a local FS



NFS Big Picture
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NFS Big Picture: CS Dept. Server

/

faculty/

jannen/

www/ cs333/

lectures/ exams/index.html

courses/

cs134/ cs432/

/dev/sda1 on /

/dev/sda2 on /courses/

NFS servers export subtrees to clients.

/etc/exports contains nfs server settings:


• /faculty/jannen exported RW to userid:jannen on 
dexter.cs.williams.edu, speckle.cs.williams.edu, …


• /courses/exported RW to userid:jannen on 
dexter.cs.williams.edu, speckle.cs.williams.edu, …


• /students/09mci3/exported RW to userid:09mci3 on 
dexter.cs.williams.edu, speckle.cs.williams.edu, …

/dev/sda3 on /faculty/

/dev/sda4 on /students/

students/

09wkj1/ 09mci3/ …/

http://dexter.cs.williams.edu
http://speckle.cs.williams.edu
http://dexter.cs.williams.edu
http://speckle.cs.williams.edu
http://dexter.cs.williams.edu
http://speckle.cs.williams.edu


NFS Big Picture: CS Lab Client

/

home/ usr/bin/ var/courses/

/dev/sda1 on /

jannen/

www/ cs333/

lectures/ exams/index.html

nfs on /home/jannen/

Clients mount nfs volumes into their FS namespace

cs134/ cs432/

nfs on /courses/

courses/



NFSv2 Statelessness

POSIX is stateful, NFSv2 is stateless 
• What challenges does this bring? 

An NFSv2 server has no notion of a “connection” 
• The client bundles all necessary “state” into each message

‣NFS file handle stores volume, inode #, generation # 

• The server can then view each client message in isolation

‣ If a client disconnects, the server does not know or care 
‣ If the server crashes, the client does not lose any relied-upon state 

• Statelessness makes recovery and error-handling easier



NFSv2 Statelessness

Idempotent operations 
• An operation is idempotent if performing the operation 

multiple times has the same effect as performing it once

‣Many POSIX system calls are not idempotent: 
‣ read(fd, buf, nbytes), write(fd, buf, nbytes), lseek(fd, offset, SEEK_CUR), etc. 
‣By specifying the starting offset with each read/write, many operations 

can be made idempotent 
‣ Notable exceptions? 
‣ mkdir fails if the file exists  

Idempotency simplifies the protocol considerably 
• If a message is dropped, send it again

• If the server crashes, clients can resend all 

unacknowledged operations



Caching: Who and What?

Network round trips are expensive, so clients would 
like to cache data locally 
• Satisfy reads from cache, rather than pay for read+RTT

• Buffer writes locally, and send updates in large messages


There are challenges to client-side caching: multiple 
clients can’t share data effectively without coordination 
• NFSv2 is supposed to appear as a local FS

• When is local cache stale w.r.t. server?

• When should you push your updates to server?


NFSv2 solutions: 
• Flush-on-close / close-to-open consistency

• Attribute cache



Close-to-open Consistency
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Attribute Cache

NFS sends GETATTR requests to check the validity 
of its cache 
• The result indicates whether or not the server has a more 

recent version of the file than the client’s cached version.


Problem: GETATTR messages can flood the 
network just to confirm the common case 
Clients often issue GETATTR requests every N 
seconds 
• This reduces GETATTR traffic to a (tunable) volume

• This also bounds the cache’s staleness, but introduces a 

window of vulnerability



NFS is an Evolving Protocol

NFS has evolved over many years: 
• NFS v1: internal SUN protocol

• NFS v2: 1989

• NFS v3: 1995

• NFS v4: 2000

• NFS v4.1: 2010

• NFS v4.2: 2016


What’s changed? 
• Statelessness has given way to statefulness in NFSv4

‣The “purity” of the v2 design has eroded in favor of performance & 

security



Takeaways

NFS fills a very common need: efficient access to 
shared files on a reliable, low-latency network 
Building a stateless protocol that implements a 
stateful API adds challenges 
• Caching helps performance but creates coordination 

challenges

‣Close-to-open consistency 
‣Attribute caching 

• Idempotent operations simplify the protocol by bundling 
state with each request

‣This also simplifies the recovery process: 
‣ If a message is lost, send it again 
‣ If the server crashes, clients can resend all unacknowledged requests


