Networked File System

CS333
Williams College

NFS:

= — — ==

Network File System

« Statelessness vs. statefulness?

« What is idempotency and why are idempotent operations
desirable?

- W
- W
- W

no caches what, and what are the implications?
nat consistency guarantees does NFS give to clients?

hat happens when an NFS client crashes? An NFS

server?

* Clients connect to an NFS server over a network

- Each client’s local VFS operations are translated into
a series of network requests

* The server receives requests, makes corresponding
changes to its local file system, and sends responses
back to clients

- Can be the acknowledgement of a successful write, data from
a read request, an error, etc.

The fact that NFS uses the client-server model is
transparent to client applications: they think they are
running on a local FS

kernel
VFS VFS
Local NFS Local NFS
FSes client FSes server
v * 4 T
~ ~N
RPC RPC
client stub server stub
~_~ ~ T
Client Server

NFS Big Picture: CS Dept. Server

courses/

cs432/

\1§ev/sda2(x1/coursei£)

,' NFS servers export subtrees to cllents

faculty/

jannen/

index.html

cs333/

lectures/

exams/

/dev/sda3(N1/faculty/

§ /etc/exports contains nfs server settings:
.+ /faculty/jannen exported RW to userid:jannen on

dexter.cs.williams.edu, speckle.cs.williams.edu, ...

« /courses/exported RW to userid:jannen on
dexter.cs.williams.edu, speckle.cs.williams.edu, ...
« /students/09mci3/exported RW to userid:09mci3 on

\:?ev/sda4(ﬂ1/studentfﬁ)

dexter.cs.williams.edu, speckle.cs.williams.edu, ...

http://dexter.cs.williams.edu
http://speckle.cs.williams.edu
http://dexter.cs.williams.edu
http://speckle.cs.williams.edu
http://dexter.cs.williams.edu
http://speckle.cs.williams.edu

/dev/sdalon /)

courses/ bin/ home/ usr/ var/

(cs134/

. J
cs432/ N (\

jannen/

ans on /courses/j cs333/

index.html lectures/ exams/

——— —— =———a—— -

_NFSv2 Statelessness

POSIX is stateful, NFSv2 is stateless
- What challenges does this bring?

An NFSv2 server has no notion of a “connection”

* The client bundles all necessary “state” into each message
» NFS file handle stores volume, inode #, generation #

* The server can then view each client message in isolation
» If a client disconnects, the server does not know or care
» If the server crashes, the client does not lose any relied-upon state

 Statelessness makes recovery and error-handling easier

Idempotent operations

« An operation is idempotent if performing the operation
multiple times has the same effect as performing it once

» Many POSIX system calls are not idempotent:
» read(fd, buf, nbytes), write(fd, buf, nbytes), Iseek(fd, offset, SEEK_CUR), etc.

» By specifying the starting offset with each read/write, many operations

can be made idempotent

» Notable exceptions?
» mkdir fails if the file exists

Idempotency simplifies the protocol considerably
» |f a message is dropped, send it again

* |f the server crashes, clients can resend all
unacknowledged operations

Caching: Who and

Network round trips are expensive, so clients would
like to cache data locally

- Satisfy reads from cache, rather than pay for read+RTT
- Buffer writes locally, and send updates in large messages

There are challenges to client-side caching: multiple
clients can’t share data effectively without coordination

« NFSv2 is supposed to appear as a local FS
« When is local cache stale w.r.t. server?
« When should you push your updates to server?

NFSv2 solutions:
 Flush-on-close / close-to-open consistency
« Attribute cache

Close-to-open Consistency

1.) Client A makes changes to F
and saves them to the server

oo m—-

N /

Client B

> F”

2.) Client B makes changes to F
and saves them to the server

— e - .

o Attrl buteCaChe -

NFS sends GETATTR requests to check the validity
of its cache

* The result indicates whether or not the server has a more
recent version of the file than the client’s cached version.

Problem: GETATTR messages can flood the
network just to confirm the common case

Clients often issue GETATTR requests every N
seconds
 This reduces GETATTR traffic to a (tunable) volume

* This also bounds the cache’s staleness, but introduces a
window of vulnerability

NFS has evolved over many years:
* NFS v1: internal SUN protocol

-S v2: 1989

=S v3: 1995

-S v4: 2000

S v4.1: 2010

« NFS v4.2: 2016

What’s changed?

- Statelessness has given way to statefulness in NFSv4

» The “purity” of the v2 design has eroded in favor of performance &
security

__lakeaways

NFS fills a very common need: efficient access to
shared files on a reliable, low-latency network

Building a stateless protocol that implements a
stateful APl adds challenges

« Caching helps performance but creates coordination

challenges
» Close-to-open consistency
» Attribute caching

 |[dempotent operations simplify the protocol by bundling
state with each request

» This also simplifies the recovery process:

» If a message is lost, send it again
» If the server crashes, clients can resend all unacknowledged requests

