
Map Reduce
CSCI 333

Williams College

This Video

Map Reduce
• The problem

‣Examples

• The model

• Fault tolerance

• The straggler problem

• Moving data vs. moving computation

When Reading a Paper
Look at authors
Look at institution
Look at past/future research
Look at publication venue
These things will give you insight into the

• motivations

• perspectives

• agendas

• resources

Think: Are there things that they are promoting? Hiding?
Building towards?

Why?

Thought Experiment

What is it that Google actually does?
• Sells ads

How do they sell ads?
• NLP on your emails, harvesting Android GPS data, etc. (in

general by creeping on our personal lives)

But what does the average person mean when they
use “Google” as a verb?
• Search!

Reverse Indexes

World-wide-web is a graph of webpages
• URI -> content (set of words)

Reverse index does the opposite
• word -> set of URIs

We can compute over an inverted index to rank
pages. 

How would you implement a reverse index?

The Problem

Hundreds of special-purpose computations per
day that
• Consume data distributed over thousands of machines

• Can be parallelized, and must be in order to finish in a

reasonable timeframe

Challenges that each computation must solve:
• Parallelization

• Fault tolerance

• Data distribution

• Load balancing

Want one computation model that can
use to abstract away these concerns

The Model

Map Reduce uses a functional model
• User-supplied map function

‣ {key-value pair} -> {set of key-value pairs}

• User-supplied reduce function

‣ {set of all key-value pairs with a given key} -> {key-value pair}

• The system applies the map function to each key-value
pair, yielding a set of intermediate key-value pairs

• The system then gathers all intermediate key-value pairs,
and for each unique key, calls reduce on the set of key-
value pairs with that key

Example: Word Frequency

Pseudo code (section 2.1):

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, “1”);

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);

Emit(AsString(result));

Emits each word plus an
associated “count” (1

here; duplicates possible)

Aggregates all counts for
individual words and

sums the entries.

Design

Input data is distributed across multiple systems
• Input data is divided into M (evenly sized) splits

• System schedules a mapper to run on each of the M splits

‣No guarantees how evenly target contents are distributed among splits

Intermediate (i.e., pre-reduced) data is distributed
across multiple systems
• Users provide a “partitioning” function (e.g., hash(key)
mod R) that is used to distribute the mapper outputs

• System schedules a reducer for each of the R pieces of the
intermediate outputs

Result of computation is located in R output files

Map Reduce

I
n
p
u
t

d
a
t
a

Input data is
partitioned into

M splits

Map Reduce

N

N

N

Mappers are
scheduled for
each of the M
splits. (May be

more splits than
mappers.)

Map Reduce

N

N

N

Mappers emit
intermediate data
that is partitioned
according to user-
supplied function
(e.g., hash of the

key to evenly
distribute data)

Map Reduce

N

N

N

Map Reduce

N

N

N

Map Reduce

N

N

N

Map Reduce

N

N
N

N
Reducers are
scheduled to

aggregate
intermediate data

into final result

N

N
N

N

Map Reduce

N

N
N

N

Map Reduce

Reducer output
is then collected,

satisfying the
overall query.

N

N
N

N

Map Reduce

N

N
N

N

Map Reduce

Other Considerations

Fault Tolerance
• Functional model makes this easy:

‣ If a failure occurs, schedule (sub)task again on another node!
‣Caveat: requires deterministic functions, otherwise may get different results

The “Straggler” problem
• What if you have a few slow machines?

‣When near end of the run, reschedule all remaining tasks
‣Use first version of task that returns

Tradeoff: Moving data vs. moving computation
• It is expensive to copy large amounts of data around

‣The MapReduce Scheduler tries as hard as possible to locate mappers/

reducers where the data lives, avoiding data copies (if the underlying
system uses replication, then there is more flexibility in scheduling)

Thoughts

MapReduce is a programming model, not
necessarily a storage system
• But it relies on the storage system and builds on many of

the themes we’ve discussed in this course

‣Locality matters
‣ Moving the computation to the data, partitioning intermediate outputs, etc.
‣Abstraction and layering let us build cohesive and easy-to-reason-about

systems
‣ drop/replace components without altering surrounding stack

Whether or not you work in “storage”,
understanding storage system designs and
tradeoffs will help you build better systems.

