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This Video

Map Reduce 
• The problem

‣Examples 

• The model

• Fault tolerance

• The straggler problem

• Moving data vs. moving computation



When Reading a Paper
Look at authors 
Look at institution 
Look at past/future research 
Look at publication venue 
These things will give you insight into the 

• motivations

• perspectives

• agendas

• resources


Think: Are there things that they are promoting? Hiding? 
Building towards?



Why?



Thought Experiment

What is it that Google actually does? 
• Sells ads


How do they sell ads? 
• NLP on your emails, harvesting Android GPS data, etc. (in 

general by creeping on our personal lives)


But what does the average person mean when they 
use “Google” as a verb? 
• Search!



Reverse Indexes

World-wide-web is a graph of webpages 
• URI -> content (set of words)


Reverse index does the opposite 
• word -> set of URIs


We can compute over an inverted index to rank 
pages. 

How would you implement a reverse index?



The Problem

Hundreds of special-purpose computations per 
day that 
• Consume data distributed over thousands of machines

• Can be parallelized, and must be in order to finish in a 

reasonable timeframe


Challenges that each computation must solve: 
• Parallelization

• Fault tolerance

• Data distribution

• Load balancing

Want one computation model that can 
use to abstract away these concerns



The Model

Map Reduce uses a functional model 
• User-supplied map function

‣ {key-value pair} -> {set of key-value pairs} 

• User-supplied reduce function

‣ {set of all key-value pairs with a given key} -> {key-value pair} 

• The system applies the map function to each key-value 
pair, yielding a set of intermediate key-value pairs


• The system then gathers all intermediate key-value pairs, 
and for each unique key, calls reduce on the set of key-
value pairs with that key



Example: Word Frequency

Pseudo code (section 2.1): 

map(String key, String value):
// key: document name 
// value: document contents 
for each word w in value: 

EmitIntermediate(w, “1”);

reduce(String key, Iterator values): 
// key: a word 
// values: a list of counts 
int result = 0;
for each v in values:

result += ParseInt(v);

Emit(AsString(result));

Emits each word plus an 
associated “count” (1 

here; duplicates possible)

Aggregates all counts for 
individual words and 

sums the entries.



Design

Input data is distributed across multiple systems 
• Input data is divided into M (evenly sized) splits

• System schedules a mapper to run on each of the M splits

‣No guarantees how evenly target contents are distributed among splits 

Intermediate (i.e., pre-reduced) data is distributed 
across multiple systems 
• Users provide a “partitioning” function (e.g., hash(key) 
mod R) that is used to distribute the mapper outputs


• System schedules a reducer for each of the R pieces of the 
intermediate outputs


Result of computation is located in R output files



Map Reduce

I
n
p
u
t

d
a
t
a

Input data is 
partitioned into 

M splits



Map Reduce

N

N

N

Mappers are 
scheduled for 
each of the M 
splits. (May be 

more splits than 
mappers.)



Map Reduce

N

N

N

Mappers emit 
intermediate data 
that is partitioned 
according to user-
supplied function 
(e.g., hash of the 

key to evenly 
distribute data)



Map Reduce

N

N

N



Map Reduce

N

N

N



Map Reduce

N

N

N



Map Reduce

N

N
N

N
Reducers are 
scheduled to 

aggregate 
intermediate data 

into final result



N

N
N

N

Map Reduce



N

N
N

N

Map Reduce

Reducer output 
is then collected, 

satisfying the 
overall query.



N

N
N

N

Map Reduce



N

N
N

N

Map Reduce



Other Considerations

Fault Tolerance 
• Functional model makes this easy:

‣ If a failure occurs, schedule (sub)task again on another node! 
‣Caveat: requires deterministic functions, otherwise may get different results 

The “Straggler” problem 
• What if you have a few slow machines?

‣When near end of the run, reschedule all remaining tasks 
‣Use first version of task that returns 

Tradeoff: Moving data vs. moving computation 
• It is expensive to copy large amounts of data around

‣The MapReduce Scheduler tries as hard as possible to locate mappers/

reducers where the data lives, avoiding data copies (if the underlying 
system uses replication, then there is more flexibility in scheduling)



Thoughts

MapReduce is a programming model, not 
necessarily a storage system  
• But it relies on the storage system and builds on many of 

the themes we’ve discussed in this course

‣Locality matters 
‣ Moving the computation to the data, partitioning intermediate outputs, etc.  
‣Abstraction and layering let us build cohesive and easy-to-reason-about 

systems 
‣ drop/replace components without altering surrounding stack  

Whether or not you work in “storage”, 
understanding storage system designs and 
tradeoffs will help you build better systems.


