Log-Structured Merge Trees **CSCI 333** Williams College

Different people approach the problem differently...

[https://pbfcomics.com/comics/game-boy/]

How Should I Organize My Data?

How Should I Organize My Data?

"Indexing"

How Should I Organize My Data?

Logging

Inserting

Append at end of log

Searching

Scan through entire log

Indexing

Insert at leaf (traverse rootto-leaf path)

Locate in leaf (traverse rootto-leaf path)

Logging

Inserting

Searching

Indexing

Are We Forced to Choose?

It appears we have a tradeoff between insertion and searching

- B-trees have
 - fast searches: $O(log_BN)$ is the optimal search cost
 - slow inserts
- Logging has
 - ▶ fast insertions
 - slow searches: cannot get worse than exhaustive scan

Goal: Data Structural Search for Optimality

B-tree searches are optimal

B-tree updates are not

on queries

> This is the promise of write-optimization

• We want a data structure with inserts that beat B-tree inserts without sacrificing

Log-Structured Merge Trees

Data structure proposed by O'Neil, Cheng, and Gawlick in 1996 Uses write-optimized techniques to significantly speed up inserts

Hundreds of papers on LSM-trees (innovating and using)

To get some intuition for the data structure, let's break it down

Log-structured • Merge • Tree

Log-Structured Merge Trees

Log-structured

• All data is written sequentially, regardless of logical ordering

Merge Tree

Log-structured

• All data is written sequentially, regardless of logical ordering

Merge

- As data evolves, sequentially written runs of key-value pairs are merged Runs of data are indexed for efficient lookup
- - Merges happen only after much new data is accumulated

Tree

Log-structured

All data is written sequentially, regardless of logical ordering

Merge

- As data evolves, sequentially written runs of key-value pairs are merged Runs of data are indexed for efficient lookup
- - Merges happen only after much new data is accumulated

Tree

- The hierarchy of key-value pair runs form a tree
- Searches start at the root, progress downwards

Log-Structured Merge Trees

Start with [O'Neil 96], then describe LevelDB

We will discuss:

- Compaction strategies
- Notable "tweaks" to the data structure
- Commonly cited drawbacks
- Potential applications

[O'Neil, Cheng, Gawlick '96]

An LSM-tree comprises a hierarchy of trees of increasing size

- All data inserted into in-memory tree (C₀)
- Larger on disk trees ($C_{i>0}$) hold data that does not fit into memory

[O'Neil, Cheng, Gawlick '96]

When a tree exceeds its size limit, its data is merged and rewritten • Higher level is always merged into next lower level (C_i merged with C_{i+1})

Merging always proceeds top down

Figure 3.1. An LSM-tree of K+1 components

[O'Neil, Cheng, Gawlick '96]

- Recall mergesort from data structures/algorithms We can efficiently merge two sorted structures in linear time using iterators

• When merging two levels, newer key-value pair versions replace older (GC)

LSM-tree invariant: newest version of any key-value pair is version nearest to top of LSM-tree

LSM-trees implement the dictionary interface

Maintain a set of key-value pairs (kv pairs)

- Support the following operations (at minimum):
 - insert(k, v) insert a new kv pair, (possibly) replacing old value
 - delete(k) remove all values associated with key k
 - (k,v) = query(k) return latest value v associated with key k
 - $\{(k_1, v_1), (k_2, v_2), \dots, (k_j, v_j)\} = query(k_i, k_1)$ return all key-value pairs in the range from k_i to k₁

> Question: How do we implement each of these operations?

We insert the key-value pair into the in-memory level, C₀

- But if an old version of kv-pair exists in the top level, we must replace it
- If inserting into C_0 causes C_0 to exceed its size limit, compact (merge)

> Inserts are fast! Only touch C₀ in common case.

Insert(k)

• Don't care about lower levels, as long as newest version is one closest to top

We insert a tombstone into the in-memory level, C₀

- A tombstone is a "logical delete" of all key-value pairs with key k
 - When we merge a tombstone with a key-value pair, we delete the key-value pair
 - When we merge a tombstone with a tombstone, just keep one copy
 - When can we delete a tombstone?
 - At the lowest level
 - When merging a *newer* key-value pair with key **k**

> Deletes are fast! Only touch C₀.

Delete(k)

Begin our search in the in-memory level, C₀

- Continue until:
 - We find a key-value pair with key **k** (return that value)
 - We find a tombstone with key **k** (return "not found")
 - We reach the lowest level and fail-to-find (return "not found")

Searches traverse (worst case) every level in the LSM-tree

We must search every level, C₀...C_n

- Return all keys in range, taking care to:
 - than **(k**_i, **v**_i)

Common strategy is to create an iterator for each level and use merge-esque logic

> Range queries must scan every level in the LSM-tree (although not all ranges in every level)

$Query(k_i, k_l)$

Return newest (k_i, v_i) where $k_i < k_i < k_i$ such that there are no tombstones with key k_i that are newer

Google's Open Source LSM-tree-ish KV-store

LevelDB

LevelDB consists of a hierarchy of SSTables

 An SSTable is a sorted set of key-value pairs (Sorted Strings Table) Typical SSTable size is 2MiB

The growth factor describes how the size of each level scales

- Let F be the growth factor (fanout)
- Let M be the size of the first level (e.g., 10MiB)
- Then the ith level, C_i has size FⁱM

The spine stores metadata about each level

- {key, offset;} for a all SSTables in a level (plus other metadata TBD)
- Spine cached for fast searches of a given level (if too big, a B-tree can be used to hold the spine for optimal searches)

Some Definitions

LevelDB Example

How do we manage the levels of our LSM?

- Ideal data management strategy would:
 - Write all data sequentially for fast inserts
 - Keep all data sorted for fast searches
 - Minimize the number of levels we must search per query (low read amplification)
 - Minimize the number of times we write each key-value pair (low write amplification)
- Good luck balancing so many competing interests in a single policy!
- ... but let's talk about some common approaches

Compaction

Option 1: Size-tiered

- Each "tier" is a collection SSTables with similar sizes
- create an SSTable in the next tier

• When we compact, we merge some number of SSTables with the same size to

Option 2: Level-tiered

- All SSTables are fixed size
- Each level is a collection SSTables with non-overlapping key ranges
- Rewrite merged SSTables into L_{i+1} (redistributing key ranges if necessary)
- Possibly continue (cascading merge) of L_{i+1} to L_{i+2}
- Several ways to choose candidate SSTables for merge (e.g., round-robin or ChooseBest)
- Possibly add invariants to our LSM to control merging (e.g., an SSTable at Li+1 can cover at most X SSTables at Li+1)

(Note: This picture shows the aggregate size of individual levels, not the size of individual SSTables in a level.)

To compact, pick SSTable(s) from L_i and merge them with SSTable(s) in L_{i+1}

We write a lot of data during compaction

- Not all data is new
 - We may rewrite a key-value pair to the same level multiple times
- How might we save extra writes?
- > VT-trees [Shetty FAST '13]: if a long run of kv-pairs would be rewritten unchanged to the next level, instead write a pointer
- Problems with VT-trees?
 - Fragmentation
 - Scanning a level might mean jumping up and down the tree, following pointers

> There is a tension between locality and rewriting

LSM-tree Problems?

LSM-tree Problems?

We write a lot of data during compaction

- Not all data written during a compaction is new data at that level We may rewrite a key-value pair to the same level multiple times
- How might we save extra writes?
 - Fragmented LSM-Tree [Raju SOSP '17]: each level can contain up to F fragments
 - Fragments can be appended to a level without merging with SSTables in that level
 - Saves the work of doing a "merge" until there is enough work to justify the I/Os
- Problems with fragments?
 - Need to be careful about returning newest values

> Again, we see a tension between locality and rewriting

Fragments can have overlapping key ranges, so may need to search through multiple fragments

LSM-tree Problems?

We read a lot of data during searches

- We may need to search every level of our LSM-tree
- How might we save extra reads?
 - Bloom filters!
 - > By adding a Bloom filter, we only search if the data exists in that level (or false positive)
- Problems with Bloom filters? Do they help with range queries? ▶ Not really...

Caching the spine & binary search both help (SSTables are sorted), but still many I/Os in worst case

Bloom filters for large data sets can fit into memory, so approximately 1+e I/Os per query

How might you design:

- an LSM-tree for an SSD?
- an LSM-tree for a HDD?

how would your designs be different?

Should we store the data inside the index, or separating the data from the index (clustered vs. declustered index)

- How might you design a system that separates keys from values? Wisckey [Lu FAST 16]: Store keys in LSM-tree, values in a log
- What are the advantages/disadvantages?
 - Can fit most of the LSM-tree (keys) in memory -> 1 I/O per search
 - Need to GC your value log, just like LFS

Different concerns (e.g., wear leveling & endurance, parallelism, gap between sequential and random I/O)

LSM-trees are a write-optimized data structure:

Many updates are batched and committed in a sequential I/O

Although we may need to search for data in multiple levels, we can avoid unnecessary I/Os with additional metadata

- Boom filters help avoid unnecessary searches in a given level
- Metadata in "spine" helps to target searches within a level

I/O amplification is one of the biggest challenges for LSM-trees

- Leveled-design causes read amplification Searches may require I/Os at each level in worst case
- Compaction causes write amplification Different compaction strategies favor write vs. read performance

Final Thoughts

