
Data Integrity

CS333
Williams College



This Video

• Media Errors
• Types of failures
• Causes/effects

• Techniques for Identifying Errors
• Error correcting codes
• Checksums



Revisiting Failure Modes

• In RAID, we assumed errors were fail-stop

• In reality, other types of errors not only exist, but 
are unfortunately more common than we’d like

Working Working



Additional Types of HDD Errors

• Latent-sector errors (LSEs)
• A sector or group of sectors becomes damaged

• For example, if a disk head scrapes against the platter, damaging the surface

• Sector corruption
• A disk block’s contents store incorrect data

• For example, if the bus that transfers data from the host to the drive has an error: 
the disk may write what it was told to write but that data is not correct

• For example, if the firmware has a bug and writes to the wrong sector: the data is 
valid, but the location is wrong

• LSEs are detectable by the disk

• Sector corruptions go unnoticed



What Should We Do?

Two main challenges:

1. Detection
• We want to know when a failure happens so that we 

don’t propagate the problem

2. Correction
• Ideally we wouldn’t just learn that we have an error, 

we would fix it



The Anatomy of a Sector

• In addition to the data, an HDD sector 
actually stores some additional information
• Header: information used by the drive controller 

(firmware), possibly including:
• Address (so the R/W head can identify its position)
• Flags (e.g., to note that the sector is broken)

• Alternate address (e.g., to use if the sector failed) 

• Data:
• User’s bytes
• Error correcting codes (ECC)



Note about ECCs

• Error Correcting/Correction Codes contain 
redundant information that can both identify
and fix a subset of possible errors
• Commonly used in modern HDDs and SSDs
• Handled entirely within the device’s firmware

• Low-overhead and transparent to users

• We won’t discuss specific ECCs; we’ll focus 
on software strategies built on top of disks.



Detecting Errors

• Although ECCs can fix some errors, we still 
want to detect LSEs and block corruptions
• Once we identify an error, we can utilize other 

techniques, like RAID or replication, to recover

• Challenge: want a low-overhead mechanism to 
detect what our data should be, so we can 
compare it to what our data actually is
• CPU cost
• Storage cost

• Memory cost



Detecting Errors

• Checksums are a relatively cheap and effective
approach to identify data discrepancies
• Store output of a deterministic function over our data

• XOR
• CRC

• Fletcher checksum

• If we recompute the checksum function on our 
data, we should get the same result
• Store a checksum somewhere after each write I/O
• On each read, ERROR if:

stored checksum != recomputed checksum



Storing Checksums

• Disk sector is our fixed-size transfer unit
• If the drive internally uses checksums (as was the 

case before ECC), can be stored alongside data
• Otherwise, we need a place that is separate from 

our sector data. But where?

Data (sector-aligned)

Data + chksums (shifted)

Disk



Storing Checksums

• Idea: store checksums as data in a dedicated 
checksum block, separate (but near) data
• But now we need two write I/Os + one read I/O 

to update a data block
• Read checksum block, update checksum, write updated 

checksum block

Data + chksums (shifted)

Data + chksums (aligned)

Disk



Detecting Errors

• Can compute & compare checksums reactively
• When we read a block, we recompute its checksum

and compare
• Lazy/on-demand approach

• Can compute & compare checksums actively
• Disk scrubbing: intentionally traversing on-disk data 

and looking for checksum mismatches
• Pros: detect errors sooner, hopefully fix before needed

• Cons: expensive, scales with size of disk



Limitations/Issues

• Block checksums let us answer the question:
• Does a physical data block match a physical value?

• They do not answer:
• Was a data block written to the logically correct 

location? (misdirected write)
• Was a data block written at all? (lost write)

• Are my data structures logically consistent?

Checksums (or similar ideas) CAN be used as tools to answer 
these questions. We just need careful design: which layer do we 
perform the checksumming? What objects are we verifying? Do 

we need additional information beyond a checksum well?



Brief Case Study

• Consider the following (simplified) inode:

• Compare it to:

struct inode {
size_t size;
int blocks;
lba_t block_ptrs[10];

}

struct inode {
size_t size;
int blocks;
lba_t block_ptrs[10];
long block_checksums[10];

}

If a block pointer refers
to logically incorrect data,
(misdirected or lost write)
the block checksum might
still match.

By adding a checksum inside
the inode, we can verify that
the data refers to the correct
logical value, not just that the 
physical sector’s contents match
the most recent write.



Summary

• Checksums give some confidence that a value 
has not changed or been corrupted
• Only detect certain classes of changes/errors

• Only detect physical changes/errors

• Checksums can be a useful building block for 
safeguarding our systems
• After identify errors, can be fixed by other means

• Checksums can be deployed at different layers 
with different advantages/costs
• Disk, block layer, FS layer, application layer, …




