
Flash-based
SSDs

[Material based on slides from Tyler Caraza-Harter]
 www: https://tyler.caraza-harter.com

SSDs vs. HDDs
Dimension 1: Cost

file:///var/folders/lh/4457jsfj27s1fnl9l9fjd_pm0000gn/T/com.readdle.PDFExpert-Mac/.pdfExpertClipboard.pdf

Source: http://www.tomshardware.com/news/ssd-hdd-solid-state-drive-hard-disk-drive-prices,14336.html

Cost: HDD vs. SSD

http://www.tomshardware.com/news/ssd-hdd-solid-state-drive-hard-disk-drive-prices,14336.html

Source: http://www.tomshardware.com/news/ssd-hdd-solid-state-drive-hard-disk-drive-prices,14336.html

Cost: HDD vs. SSD

http://www.tomshardware.com/news/ssd-hdd-solid-state-drive-hard-disk-drive-prices,14336.html

Note: These are trends, not
the most up-to-date data.

There are different classes
of HDDs and SSDs which
complicate this graph, but
the thing to note is that
there is a gap, but it is
narrowing and all costs
are trending downward.

SSDs vs. HDDs

Dimension 1: Cost
Dimension 2: Physical Media

file:///var/folders/lh/4457jsfj27s1fnl9l9fjd_pm0000gn/T/com.readdle.PDFExpert-Mac/.pdfExpertClipboard.pdf

Disk Overview

!
Implications:

- slow (mechanical parts must move through space)

 I/O cost: setup (seek + rotate), transfer

- cannot parallelize operations (only one head)

 - poor random I/O (locality around disk head) !
Random I/Os take 10ms+!

Flash

!

 No moving parts! Instead, SSDs:

- Hold charge in cells

- No seeks in I/O setup!

- Hardware organization supports
 ! internal parallelism.

SLC: Single-Level Cell

ch
ar

ge

NAND Cell

SLC: Single-Level Cell

ch
ar

ge

NAND Cell

1

SLC: Single-Level Cell

ch
ar

ge

NAND Cell

0

MLC: Multi-Level Cell

ch
ar

ge

NAND Cell

00

MLC: Multi-Level Cell

ch
ar

ge

NAND Cell

01

MLC: Multi-Level Cell

ch
ar

ge

NAND Cell

10

MLC: Multi-Level Cell

ch
ar

ge

NAND Cell

11

SLC
ch

ar
ge

ch
ar

ge

MLC

Single- vs. Multi- Level Cell

Single- vs. Multi- Level Cell

SLC
ch

ar
ge

ch
ar

ge

MLC

expensive
robust

cheap
sensitive

Single- vs. Multi- Level Cell

SLC
ch

ar
ge

ch
ar

ge

MLC

expensive
robust

cheap
sensitive

TLC (3 bits/cell) and QLC (4 bits/cell) also exist, and
are even cheaper and more sensitve than MLC.

SSDs vs. HDDs

Dimension 1: Cost

 Dimension 3: Lifetime

Dimension 2: Physical Media

file:///var/folders/lh/4457jsfj27s1fnl9l9fjd_pm0000gn/T/com.readdle.PDFExpert-Mac/.pdfExpertClipboard.pdf

Wearout
Problem: flash cells wear out after being
overwritten too many times.
!

!

MLC: ~10K writes
SLC: ~100K writes

Wearout
Problem: flash cells wear out after being
overwritten too many times.
!

!

MLC: ~10K writes
SLC: ~100K writes

Cell management strategy: wear leveling.
- Distribute writes across cells to more evenly
spread the wear

- Prevents some cells from wearing out while
 others still fresh.

SSDs vs. HDDs

Dimension 1: Cost

 Dimension 3: Lifetime

Dimension 2: Physical Media

Dimension 4: Internal Organization

file:///var/folders/lh/4457jsfj27s1fnl9l9fjd_pm0000gn/T/com.readdle.PDFExpert-Mac/.pdfExpertClipboard.pdf

Banks

Banks can be accessed in parallel.

Bank 0 Bank 1 Bank 2 Bank 3

Flash chips are divided into banks (aka, planes). !

Banks

Banks can be accessed in parallel.

Bank 0 Bank 1 Bank 2 Bank 3

readread

Flash chips are divided into banks (aka, planes). !

Banks

Banks can be accessed in parallel.

Bank 0 Bank 1 Bank 2 Bank 3

Flash chips are divided into banks (aka, planes). !

Banks

Banks can be accessed in parallel.

Bank 0 Bank 1 Bank 2 Bank 3

datadata

Flash chips are divided into banks (aka, planes). !

Banks

Banks can be accessed in parallel.

Bank 0 Bank 1 Bank 2 Bank 3

Flash chips are divided into banks (aka, planes). !

Flash Writes
Writing 0’s:
 - fast, fine-grained
!

!

Writing 1’s:
 - slow, course-grained

Flash Writes
Writing 0’s:
 - fast, fine-grained
 - called “program”
!

Writing 1’s:
 - slow, course-grained
 - called “erase”

Flash Writes
Writing 0’s:

 - called “program”
!

Writing 1’s:

 - called “erase”

 - fast, fine-grained [unit: page]

- slow, course-grained [unit: block]

Bank 0 Bank 2 Bank 3Bank 1

 A Bank Consists of Blocks

Bank 0 Bank 2 Bank 3

each bank contains
many “blocks”

A Bank Consists of Blocks

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

A Block Consists of Pages

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

one block

A Block Consists of Pages

Block

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

one page

The Heirarchy of SSD components:

One NAND flash Chip

Is made of up several Banks

Is made up of several blocks

Is made up of several pages

Block

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

Block

1111
1111

1111
1111

1111
1111

1001
1111

1111
1111

1111
1111

1111
1111

1111
1111

program

Block

1111
1111

1111
1111

1111
1111

1001
1111

1111
1111

1111
1111

1111
1111

1111
1111

Block

1111
1111

1111
1111

1111
1111

1001
1100

1111
1111

1111
1111

1111
1111

1111
1111

program

Block

1111
1111

1111
1111

1111
1111

1001
1100

1111
1111

1111
1111

1111
1111

1111
1111

Block

1111
1111

1111
1111

1111
1111

1001
1100

1111
1111

1111
1111

1110
0001

1111
1111

program

Block

1111
1111

1111
1111

1111
1111

1001
1100

1111
1111

1111
1111

1110
0001

1111
1111

Block

1111
1111

1111
1111

1111
1111

1001
1100

1111
1111

1111
1111

1110
0001

1111
1111

erase

Block

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

erase

Block

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

APIs
disk flash

re
ad

w
rit

e

APIs
disk flash

re
ad read sector read page

w
rit

e

APIs
disk flash

re
ad read sector read page

write sector

w
rit

e

program page
(0’s)

erase block
(1’s)

Plane: 1024 to 4096 blocks
 - planes accessed in parallel
!

Block: 64 to 256 pages
 - unit of erase
!

Page: 2 to 8 KB
 - unit of read and program

 Flash Chip Hierarchy

Plane: 1024 to 4096 blocks
 - planes accessed in parallel
!

Block: 64 to 256 pages
 - unit of erase
!

Page: 2 to 8 KB
 - unit of read and program

 Flash Chip Hierarchy

- Low end SSDs: 2-4 channels
 - High end SSDs: 8+ channels

Channel: The number of chips that the controller
can talk to sumultaneously

Disk vs. Flash Performance
Throughput:
 - disk: ~130 MB/s (sequential)
 - flash: ~200 MB/s

- 550 MB/s

Disk vs. Flash Performance
Throughput:
 - disk: ~130 MB/s (sequential)
 - flash: ~200 MB/s
!
Latency!
 - disk: ~10 ms (one op)
 - flash
 - read: 10-50 us
 - program: 200-500 us
 - erase: 2 ms

- 550 MB/s

Traditional File Systems

File System

Storage Device
Traditional API:
 - read sector
 - write sector

Traditional File Systems

File System

Storage Device
Traditional API:
 - read sector
 - write sector

not same as flash

Options
1. Build/use new file systems for flash
- Example: JFFS, YAFFS

 - Problem: this takes a lot of work! !

2. Translate traditional API onto flash API.
 - then we can use FFS, LFS, etc. without any
 additional work!

read(addr):
 return flash_read(addr)
!

write(addr, data):
 block_copy = flash_read(block of addr)
 modify block_copy with data
 flash_erase(block of addr)
 flash_program(block of addr, block_copy)

 Traditional API -> Flash: attempt 1

Memory:

Flash:
00
00

00
11

11
00

11
11

11
11

11
11

11
11

11
11

00
01

11
11

11
11

11
11

block 0 block 1 block 2

Flash:
00
00

00
11

11
00

11
11

11
11

11
11

11
11

11
11

00
01

11
11

11
11

11
11

block 0 block 1 block 2

FS wants to
write 0001

Memory:

Flash:
00
00

00
11

11
00

11
11

11
11

11
11

11
11

11
11

00
01

11
11

11
11

11
11

block 0 block 1 block 2

Memory:

Flash:
00
00

00
11

11
00

11
11

11
11

11
11

11
11

11
11

00
01

11
11

11
11

11
11

block 0 block 1 block 2

Memory:
00
00

00
11

11
00

11
11

read all other
pages in block

Flash:
00
00

00
11

11
00

11
11

11
11

11
11

11
11

11
11

00
01

11
11

11
11

11
11

block 0 block 1 block 2

Memory:
00
00

00
11

11
00

11
11

Flash:
00
00

00
11

11
00

11
11

11
11

11
11

11
11

11
11

00
01

11
11

11
11

11
11

block 0 block 1 block 2

Memory:
00
01

00
11

11
00

11
11

modify target
page in memory

Flash:
00
00

00
11

11
00

11
11

11
11

11
11

11
11

11
11

00
01

11
11

11
11

11
11

block 0 block 1 block 2

Memory:
00
01

00
11

11
00

11
11

Flash:
11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

00
01

11
11

11
11

11
11

block 0 block 1 block 2

Memory:
00
01

00
11

11
00

11
11

erase block

Flash:
11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

00
01

11
11

11
11

11
11

block 0 block 1 block 2

Memory:
00
01

00
11

11
00

11
11

Flash:
11
11

11
11

11
11

11
11

00
01

11
11

11
11

11
11

block 0 block 1 block 2

Memory:
00
01

00
11

11
00

11
11

program all
pages in block

00
01

00
11

11
00

11
11

Flash:
11
11

11
11

11
11

11
11

00
01

11
11

11
11

11
11

block 0 block 1 block 2

Memory:

00
01

00
11

11
00

11
11

Write Amplification

!

Writing one 2KB page may cause:
 - read, erase, and program of 256KB block.
!

Problem: Random writes are extremely expensive!

Write Amplification

!

Writing one 2KB page may cause:
 - read, erase, and program of 256KB block.
!

Would FFS or LFS be better with flash?

Problem: Random writes are extremely expensive!

File Systems over Flash

!

Copy-On-Write FS may prevent some expensive
random writes.

File Systems over Flash

!

Copy-On-Write FS may prevent some expensive
random writes.

What about wear leveling? !

File Systems over Flash

!

What about wear leveling? LFS won’t do this.
!

Copy-On-Write FS may prevent some expensive
random writes.

File Systems over Flash

!

What about wear leveling? LFS won’t do this.
!

What if we want to use some other FS?

Copy-On-Write FS may prevent some expensive
random writes.

(Perhaps some other FS has features or APIs
our applications rely on, so we must use it)

Better Solution

!

Translate logical device addrs to physical addrs.
!

!

Add copy-on-write translation layer between FS
and flash. Avoids RMW (read-modify-write) cycle.

FTL: Flash Translation Layer.

 Question: How should translations be managed?

Flash Translation Layer

00
01

block 0

00
10

00
11

00
00

10
01

block 1

11
11

11
11

11
11

0 1 2 3 4 5 6 7

physical:

logical:

Flash Translation Layer

00
01

block 0

00
10

00
11

00
00

10
01

block 1

11
11

11
11

11
11

0 1 2 3 4 5 6 7

physical:

logical:

write 1101

Flash Translation Layer

00
01

block 0

00
10

00
11

00
00

10
01

block 1

11
01

11
11

11
11

0 1 2 3 4 5 6 7

physical:

logical:

write 1101

Flash Translation Layer

00
01

block 0

00
10

00
11

00
00

10
01

block 1

11
01

11
11

11
11

0 1 2 3 4 5 6 7

physical:

logical:

write 1101

Flash Translation Layer

00
01

block 0

00
10

00
11

00
00

10
01

block 1

11
01

11
11

11
11

0 1 2 3 4 5 6 7

physical:

logical:

Flash Translation Layer

00
01

block 0

00
10

00
11

00
00

10
01

block 1

11
01

11
11

11
11

0 1 2 3 4 5 6 7

physical:

logical:
must eventually

be garbage collected

FTL

!

!

Physical pages can be in three states:
 - valid, invalid, free

Could be implemented as device driver
(OS) or in firmware (code running on SSD).
 - usually done in firmware

 Where to store LBA->PBA mappings? SRAM.

States

free valid

invalid

States

free valid

invalid

program

erase

States

free valid

invalid

program

erase relocate
or TRIM

SSD Architecture

FTL SRAM:
mapping tbl

SSD: looks like a traditional disk

(Traditional block API)

Problem: Big Mapping Table
Assume 200GB device, 2KB pages, 4-byte entries.
!

SRAM needed: (200GB / 2KB) * 4 bytes = 400 MB.
!

That table would be too big, SRAM is expensive!

Page Translations

00
01

block 0

00
10

00
11

00
00

10
01

block 1

01
01

11
11

11
11

0 1 2 3 4 5 6 7

physical:

logical:

2-Page Translations

00
01

block 0

00
10

00
11

00
00

10
01

block 1

01
01

11
11

11
11

0 1 2 3 4 5 6 7

physical:

logical:

Larger Mappings
Advantage: larger mappings decrease table size.
!

Disadvantage?

2-Page Translations

00
01

block 0

00
10

00
11

00
00

10
01

block 1

01
01

11
11

11
11

0 1 2 3 4 5 6 7

physical:

logical:

2-Page Translations

00
01

block 0

00
10

00
11

00
00

10
01

block 1

01
01

11
11

11
11

0 1 2 3 4 5 6 7

physical:

logical:

write 1011

2-Page Translations

00
01

block 0

00
10

00
11

00
00

10
01

block 1

01
01

10
11

01
01

0 1 2 3 4 5 6 7

physical:

logical:

write 1011

copy

2-Page Translations

00
01

block 0

00
10

00
11

00
00

10
01

block 1

01
01

10
11

01
01

0 1 2 3 4 5 6 7

physical:

logical:

write 1011

2-Page Translations

00
01

block 0

00
10

00
11

00
00

10
01

block 1

01
01

10
11

01
01

0 1 2 3 4 5 6 7

physical:

logical:

write 1011

Larger Mappings
Advantage: larger mappings decrease table size.
!

Disadvantages?

 - more read-modify-write updates

- less flexibility for placement

- Increased write amplification

 - more garbage

Hybrid FTL
Use course-grained mapping for most (e.g., 95%)
of data. Map at block level.
!

Use fine-grained mapping for recent data.
Map at page level.

Log Blocks

!

!

Eventually garbage collect old pages.

Write changed pages to designated log blocks.

After blocks become full, merge changes with old
data.

- always search for page in these mappings first

Merging
Merging technique depends on I/O pattern.
!

Three merge types:
 - full merge
 - partial merge
 - switch merge

Merging
Merging technique depends on I/O pattern.
!

Three merge types:
 - full merge
 - partial merge
 - switch merge

A

block 0

B C D 11
11

block 1 (log)

11
11

11
11

11
11

0 1 2 3

physical:

logical: …

11
11

block 2

11
11

11
11

11
11

A

block 0

B C D 11
11

block 1 (log)

11
11

11
11

11
11

0 1 2 3

physical:

logical: …

11
11

block 2

11
11

11
11

11
11

write D2

A

block 0

B C D D2

block 1 (log)

11
11

11
11

11
11

0 1 2 3

physical:

logical: …

11
11

block 2

11
11

11
11

11
11

write D2

A

block 0

B C D D2

block 1 (log)

11
11

11
11

11
11

0 1 2 3

physical:

logical: …

11
11

block 2

11
11

11
11

11
11

A

block 0

B C D D2

block 1 (log)

11
11

11
11

11
11

0 1 2 3

physical:

logical: …

11
11

block 2

11
11

11
11

11
11

eventually, we need to get rid of red arrows,
as these represent expensive mappings

A

block 0

B C D D2

block 1 (log)

11
11

11
11

11
11

0 1 2 3

physical:

logical: …

11
11

block 2

11
11

11
11

11
11

A

block 0

B C D D2

block 1 (log)

11
11

11
11

11
11

0 1 2 3

physical:

logical: …

A

block 2

B C D2

A

block 0

B C D D2

block 1 (log)

11
11

11
11

11
11

0 1 2 3

physical:

logical: …

A

block 2

B C D2

A

block 0

B C D D2

block 1 (log)

11
11

11
11

11
11

0 1 2 3

physical:

logical: …

A

block 2

B C D2

A

block 0

B C D D2

block 1 (log)

11
11

11
11

11
11

0 1 2 3

physical:

logical: …

A

block 2

B C D2

garbage

Merging
Merging technique depends on I/O pattern.
!

Three merge types:
 - full merge
 - partial merge
 - switch merge

A

block 0

B C D 11
11

block 1 (log)

11
11

11
11

11
11

0 1 2 3

physical:

logical: …

11
11

block 2

11
11

11
11

11
11

A

block 0

B C D 11
11

block 1 (log)

11
11

11
11

11
11

0 1 2 3

physical:

logical: …

11
11

block 2

11
11

11
11

11
11

write D2

A

block 0

B C D 11
11

block 1 (log)

11
11

11
11 D2

0 1 2 3

physical:

logical: …

11
11

block 2

11
11

11
11

11
11

write D2

A

block 0

B C D 11
11

block 1 (log)

11
11

11
11 D2

0 1 2 3

physical:

logical: …

11
11

block 2

11
11

11
11

11
11

A

block 0

B C D A

block 1 (log)

B C D2

0 1 2 3

physical:

logical: …

11
11

block 2

11
11

11
11

11
11

A

block 0

B C D A

block 1 (log)

B C D2

0 1 2 3

physical:

logical: …

11
11

block 2

11
11

11
11

11
11

A

block 0

B C D A

block 1

B C D2

0 1 2 3

physical:

logical: …

11
11

block 2

11
11

11
11

11
11

A

block 0

B C D A

block 1

B C D2

0 1 2 3

physical:

logical: …

11
11

block 2

11
11

11
11

11
11

garbage

Merging
Merging technique depends on I/O pattern.
!

Three merge types:
 - full merge
 - partial merge
 - switch merge

A

block 0

B C D 11
11

block 1 (log)

11
11

11
11

11
11

0 1 2 3

physical:

logical: …

11
11

block 2

11
11

11
11

11
11

A

block 0

B C D 11
11

block 1 (log)

11
11

11
11

11
11

0 1 2 3

physical:

logical: …

11
11

block 2

11
11

11
11

11
11

write A2

A

block 0

B C D A2

block 1 (log)

11
11

11
11

11
11

0 1 2 3

physical:

logical: …

11
11

block 2

11
11

11
11

11
11

write A2

A

block 0

B C D A2

block 1 (log)

B2 11
11

11
11

0 1 2 3

physical:

logical: …

11
11

block 2

11
11

11
11

11
11

write B2

A

block 0

B C D A2

block 1 (log)

B2 C2 11
11

0 1 2 3

physical:

logical: …

11
11

block 2

11
11

11
11

11
11

write C2

A

block 0

B C D A2

block 1 (log)

B2 C2 D2

0 1 2 3

physical:

logical: …

11
11

block 2

11
11

11
11

11
11

write D2

A

block 0

B C D A2

block 1 (log)

B2 C2 D2

0 1 2 3

physical:

logical: …

11
11

block 2

11
11

11
11

11
11

garbage

Merging
Merging technique depends on I/O pattern.
!

Three merge types:
 - full merge
 - partial merge
 - switch merge

Summary
Flash is much faster than disk, but…
!

It is more expensive.
!

It’s not a drop-in replacement beneath an FS
without a complex layer for emulating hard disk API.

