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Filter Motivation

• Sometimes, we’re asked to perform an operation on a 
piece of data that doesn’t actually exist
• Consider a library. If we know the call number of a book we 

want, we can: (1) walk to the correct floor, (2) find the shelf 
with the correct range, and (3) scan for the book on the shelf.
• If the book was checked out, all of that work was wasted!

• These steps are surprisingly similar to the process of looking 
for an item in a data structure so large that it exceeds RAM

• What does this have to do with filters?
• Filters compactly represent a set so we can check for the 

existence of an item. If the filter can confirm that the item 
does not exist, then we don’t need to do the expensive search!



Filters: the BIG idea

• Filters are not exact. By embracing approximation, 
filters can be memory efficient data structures
• Some false positives are allowed

• Claim something is in the set when it is actually not present
• But false negatives are never tolerated

• Claim that something is absent when it is actually present

• Many applications are OK with this behavior
• Typically filters are used in applications where a wrong 

answer just wastes work, but does not harm correctness
• Recall the library example from before:

• If we confirm the book doesn’t exist, we don’t search (correct)
• If we mistakenly say the book exists, all we do is waste the time that 

we would have needed in the absence of the filter (correct, but slow)



Filter Operations

• Since filters approximately represent sets, a filter 
must support:
• Insertions: insert(key)
• Queries: lookup(key)

• Filters may also support other operations:
• Deletion: remove(key)
• Union: merge(filtera, filterb)



Filter Case Study: Bloom



Bloom Filters

Goal: approximately represent a set of n elements 
using a bit array
• Returns either:

• Definitely NOT in the set
• Possibly in the set

Parameters: m, k
• m: Number of bits in the array
• k: Set of k hash functions { h1, h2, …, hk }, each with 

range {0…m-1}



Concrete Example: k=3, m=10

h1 (    )

h2 (    )

h3 (    )

0 0 0 0 0 0 0 0 0 0M =

INSERT(     )
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Concrete Example: k=3, m=10

h1 (    )

h2 (    )

h3 (    )

0 1 0 1 1 0 0 1 0 1M =

INSERT(     )

Set: 

Note: bit was
already set



Concrete Example: k=3, m=10

h1 (    )

h2 (    )

h3 (    )

0 1 0 1 1 0 0 1 0 1M =

LOOKUP(     )

Set: 

All k bits are 1:
return 
“possibly in set”



Concrete Example: k=3, m=10

h1 (    )

h2 (    )

h3 (    )

0 1 0 1 1 0 0 1 0 1M =

LOOKUP(     )

Set: 

Not all k bits are 1:
return 
“definitely NOT in set”



Concrete Example: k=3, m=10

h1 (    )

h2 (    )

h3 (    )

0 1 0 1 1 0 0 1 0 1M =

LOOKUP(     )

Set: 

All k bits are 1:
return 
“possibly in set”

False Positive!



Tuning False Positives

• What happens if we increase m?
• What happens if we increase k?

• False positive rate f is:

P(a given bit is still 0 after n insertions with k independent hash functions)



Bloom Filters

• Are there any problems with Bloom filters?
• What operations do they support/not support?
• How do you grow a Bloom filter?
• What if your filter itself exceeds RAM (how bad is 

locality)?
• What does the cache behavior look like?



Bloom Filters: Challenges

• How do you grow a Bloom filter?
• Short answer: you can’t

• Filter only stores bits: no way to “invert” bits to recover items
• Longer answer: rebuild

• If you wanted to grow a Bloom filter, you could allocate a new 
(empty) filter of the target size, then read through all items and 
insert them to the new filter
• Note: the underlying data may or may not be available!



Bloom Filters: Challenges

• What if your filter itself exceeds RAM?
• What does the cache behavior look like?

• Good hash functions intentionally create a uniform distribution 
to avoid “clumping”

• So even if the filter fits in RAM, the cache locality is poor due to 
k random accesses

• If the data set is truly large, there are a few options:
• Use fewer bits per item (sacrifice precision)
• Tolerate higher false positive rates
• Use caching techniques, adding potential for expensive misses



Bloom Filters: Challenges

• What operations do they support/not support?

• insert?

• query?

• delete?

• rename?

• “count”?

Yes!

Yes!

No! (Multiple items may have “set” any given bit)

No! (rename = delete + insert)

No! (maybe/no answers only)

Bloom filter extensions that add support for additional operations do exist, 

but these operations are not supported by the standard data structure.



Filter Case Study: Quotient



Quotient Filters

• Based on a technique from a homework question in 
Donald Knuth’s “The Art of Computer 
Programming: Sorting and Searching, volume 3” 
(Section 6.4, exercise 13)
• Quotienting Idea:

Hash: 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 1



Quotient Filters

• Based on a technique from a homework question in 
Donald Knuth’s “The Art of Computer 
Programming: Sorting and Searching, volume 3” 
(Section 6.4, exercise 13)
• Quotienting Idea:

Hash: 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 1

Quotient: qmost significant bits Remainder: r least significant bits

Remaining bits are discarded/lost



Building a Quotient Filter
• The quotient is used as an index into an m-bucket array, where the 

remainder is stored.
• Essentially, filter is a hashtable that stores a remainder as the value
• The quotient is implicitly stored because it is the bucket index

• Collisions are resolved using linear probing and 3 extra bits per bucket
• is_occupied: whether a slot is the canonical slot for some value 

currently stored in the filter
• is_continuation: whether a slot holds a remainder that is part of a 

run (but not the first element in the run)
• is_shifted: whether a slot holds a remainder that is not in its canonical 

slot

• A canonical slot is an element’s “home bucket”, i.e., where it belongs 
in the absence of collisions.



Quotient Filter Example

Hash table 
with external 

chaining

Hash table 
with linear 
probing + 

bits 

Table of 
objects with 
quotients/ 
remainders 

for reference

[https://www.usenix.org/conference/hotstorage11/dont-thrash-how-cache-your-hash-flash]



Quotient Filter Example

0132put(     )

2859put(     )

2609put(     )

3402put(     )

q = 1 bit
r = 3 bits

Parameters:

Quotient (Bucket Index)       Remainder (Item Stored)

0 132

2 859

2 609

3 402



Quotient Filter Example

is_occupied is_shifted

is_continuation

402 did not collide with any elements,
but it was shifted from its canonical slot
by 609 and 859. 

859 collided with 609, so 859 is both
shifted and part of a run. 402 would
live here, so this bucket is occupied

Collision, but 609 is in it’s canonical slot,
so is_occupied is set



Quotient Filter Concept-check

• What are the possible reasons for a collision?
• Which collisions are treated as “false positives”

• What parameters does the QF give the user? In 
other words:
• What knobs can you turn to control the size of the filter?
• What knobs can you turn to control the false positive 

rate of the filter?



Quotient Filter Concept-check

• What are the possible reasons for a collision?
• Collisions in the hashtable

• Same quotient, but different remainders cause shifting
• Collisions in the hashspace

• Different keys may produce identical quotients/remainders
• If a hash function collision -> not the QF’s fault
• If due to dropped bits during “quotienting” -> that is the QF’s fault

• Which collisions are treated as “false positives”
• Collisions in the hash space

• What parameters does the QF give the user? In other 
words:
• What knobs can you turn to control the size of the filter?
• What knobs can you turn to control the false positive rate of the 

filter?
• Quotient bits (number of buckets)
• Remainder bits (how many unique bits per element to store)



Why QF over BF?

• QF supports deletes
• QF supports “merges”
• QF has good cache locality

• How many locations accessed per operation?
• Some math can show that runs/clusters are expected to be 

small when we size our array properly

• Don’t Thrash, How to Cache Your Hash on Flash also 
introduces the Cascade filter, a write-optimized filter 
made up of increasingly large QFs that spill over to disk.
• Similar idea to Log-structured merge trees, which are an 

exciting topic for another unit!



Cascade Filter

[https://www.usenix.org/conference/hotstorage11/dont-thrash-how-cache-your-hash-flash]

Inserts are fast (duplicates are OK, so inserts only touch RAM level)
Lookups do 1 I/O per level



Takeaways

• Filter use case: save I/O in big data applications
• By embracing approximation, filters can compactly 

represent sets
• Filters tolerate some false positives
• Filters never allow false negatives

• Filter designs can be tuned to trade resources for 
accuracy or features, but…
• Not all filters are created equal
• What operations are important?
• How important is cache efficiency?


