Deduplication: Concepts and Techniques

William Jannen
jannen@cs.williams.edu

April 25, 2021

1 Document Overview

This document’s goal is to present a survey of the general
deduplication design space. Deduplication is a broad con-
cept, and deduplication systems can be implemented us-
ing a variety of techniques and design choices. For each
core design element, the document presents the high-level
idea and a set of considerations that influence an appropri-
ate choice for that design. The document also presents a
few representative systems as case studies, hopefully giv-
ing a sense for practical parameter choices and their im-
plications. If there are parts of the text that are unclear,
please let me know so that I can improve them! I am not
aware of any good surveys/introductory texts on dedupli-
cation, so this is my attempt to create one for us to use in
this class.

Learning objectives. After reading, you should be able
to answer the following questions:

Definition. At a high level, what are the core tasks that
deduplication systems perform?

Measurement. How do you quantify the effectiveness of
a deduplication system so that we can compare it
against other designs?

Timing. When do you perform deduplication? What is
the difference between an inline and an offline dedu-
plication system? How do they trade performance
and space consumption?

Data structures. What is a chunk? What is a fingerprint?
What is the fingerprint index, and how is the finger-
print index used?

Parameters. What knobs can be tuned in a typical
deduplication system design, and how do differ-
ent choices affect performance, deduplication ratio,
metadata overhead, and fragmentation?

Use cases. In what scenarios are deduplication tech-
niques beneficial? What characteristics of an envi-
ronment present promising opportunities or difficult
challenges for a deduplication system to manage?

2 Introduction

Data deduplication is a form of compression. The name
itself, deduplication, hints at a deduplication system’s
overarching goal, which is to identify duplicate data,
and eliminate repeated instances of that data. Success-
fully identifying and eliminating redundant data can dras-
tically decrease the storage requirements for systems that
manage large volumes of data. This is especially true
for systems which maintain multiple copies of identical
files—such as a system that performs nightly backups—
or for systems that store many files with large, overlap-
ping regions—such as boilerplate or configuration files
that are part of an OS distribution. Even when storage
capacity is not an issue, there are other reasons that dedu-
plication may be valuable; for example, when sending
data from a client to a server, a client that knows that the
server already has a copy of the data it wishes to send
can avoid transferring unnecessary data, avoiding network
overheads.

Completely eliminating all duplicate data is an ad-
mirable goal, but deduplication systems may tolerate
some replication for a variety of reasons. For example, al-
lowing some redundant data may be necessary in order to
complete important tasks in a reasonable amount of time
(identifying all duplicates may be expensive!), or tolerate
system failures (if we lose the only copy of a file system
superblock, our whole system is hosed). Thus, we would
like some measure that describes a deduplication system’s
effective “data savings”. For that, we turn to the dedupli-
cation ratio.

Concretely, if N bytes of data are presented to a storage
system S, which unambiguously represents that data using
B bytes, then the deduplication ratio of D is defined to be:

Ds== (1)

A more efficient deduplication system will have a
higher deduplication ratio (i.e., it represents more data us-
ing fewer bytes).

Dgs is not the only measure that we care about. Latency,
throughput, scalability, and resiliency are all system de-
sign concerns, and the right balance of performance and

deduplication efficiency is going to be context dependent.

2.1 Deduplication in a nutshell

Deduplication system designs differ along many dimen-
sions, but at a high level, they all follow the same ba-
sic formula. The system receives a data stream as input,
and it breaks that stream into discrete parts called chunks.
For each chunk, the system calculates a collision-resistant
hash (e.g., SHA-1, MD5). This hash value is com-
monly referred to as the chunk’s fingerprint because the
fingerprint uniquely identifies the chunk’s contents: the
same data always produces the same fingerprint, and two
chunks that differ by even a single byte should have inde-
pendent fingerprints. The set of unique chunk hashes (fin-
gerprints) and the locations of the data that those finger-
prints describe (chunk pointers) are stored in a data struc-
ture that can be searched and updated when new data is
written. Regardless of which data structure is used, this
repository of (fingerprint, chunk pointer) map-
pings is called the system’s fingerprint index.

From this basic outline, we can start to see a rough
deduplication workflow. As the system processes a data
stream, it breaks the stream into successive data chunks.
For each chunk, the system calculates the chunk’s unique
fingerprint and checks the fingerprint index to see if that
chunk is new. If the fingerprint is missing (i.e., the chunk
is new), the system writes the chunk and adds a new
(fingerprint, chunk pointer) pair to the index for
future data sharing. If the fingerprint is found in the in-
dex (i.e., the chunk is a duplicate), then the system does
not write the chunk; instead, the system stores a logical
pointer to the existing chunk, which is now shared.

A deduplicated data stream can also be restored from
a list of fingerprints in a straightforward manner. To re-
assemble the original data stream, the stream’s sequence
of fingerprints are iteratively found in the fingerprint in-
dex, and the data referred to by the chunk pointers are
added to the stream.

2.2 Design Choices

Although a given deduplication system can be large and
complex, there are three primary design decisions within
the basic deduplication framework:

* when to perform deduplication,
* where to perform deduplication, and
* what to deduplicate

This section breaks down these choices and explains the
considerations that might lead system designers to make
particular choices.

2.2.1 When?

The first choice in the design of any deduplication system
is when to perform deduplication. The two main classes of
deduplication systems are inline and post-process dedu-
plication [7].

Inline. In an inline deduplication system, the data
stream is chunked and hashed before it is written to
disk [6]. The main advantage of the inline approach
is that duplicate chunks are identified before they are
written, saving I/O. However, inline deduplication intro-
duces chunking, hashing, and index queries—expensive
computations—onto the critical path of each potential
write. As a result, inline deduplication systems generally
suffer increased latency.

Offline. Post-process (or offline) deduplication elimi-
nates data redundancy after the data has been completely
committed to disk. This deferred processing keeps system
responsiveness high, since duplicate elimination is done
as a background process—possibly even on a remote sys-
tem (imagine a system where a nightly deduplication pro-
cess scans the system and copies all new unique data to a
backup server). Unfortunately, duplicate data temporarily
consumes space in the time between being written and the
time that the data is identified as a duplicate and replaced
with a reference to the common data.

Thus, an offline deduplication system may store more
data than is strictly necessary, but with some extra work
in the background, it can restore “good performance.”
In some ways, this trade-off is similar to the way that
garbage collection in a log-structured file system or in a
NAND flash SSD pushes the work of reclaiming space off
of the critical path. However, there may be a point where
the background work becomes a bottleneck, so sufficient
resources must be available for this approach to be suc-
cessful.

2.2.2 What?

A second choice for deduplication systems is what to
deduplicate. Deduplication can be performed at the gran-
ularity of entire files [2], fixed-size blocks [11}|15]], or
variable-sized chunks [3}|10]. (Hybrid schemes are also
possible, where the chunking strategy is dynamic. Hy-
brid schemes often leverage additional information, such
as file type, to form heuristics and make decisions on a
case-by-case basis about which chunking scheme is most
appropriate [9]. For example, an .mp3 file might be dedu-
plicated at whole-file granularity, but a .c file may use
variable-sized chunking. The rest of this section gives
some intuition for why that might be a good design.)

Whole file. In whole-file deduplication, the system cal-
culates one fingerprint for each file, regardless of the file’s
size. Files are deduplicated only if their entire contents are
identical to an existing file. The downside of this coarse
file-level granularity is that there are fewer sharing oppor-
tunities. For example, consider two large files which are
identical up to the last byte; with whole-file deduplication,
no data is shared whatsoever.

File granularity is inappropriate for deduplicating boil-
erplate code, configuration files, and files that are itera-
tively modified. In these contexts, no amount of data will
be shared despite large regions of commonality.

Yet in some domains, whole file granularity is prefer-
able. Compressed files and media files exhibit the prop-
erty that even small modifications to the underlying data
completely transform the final representation. As a con-
sequence, either the whole file is identical or none of it
is [9]].

Fixed-size chunking. Dividing data into fixed chunk
sizes, which are typically on the order of a few kilobytes,
enables more fine-grained sharing than whole-file dedu-
plication. Chunk boundaries are set at predetermined off-
sets in the data (often fixed-size chunks are set at 4KiB
to match common page/block sizes). Using fixed offsets
makes the task of dividing the data fast and computation-
free, and fixed offsets lend themselves nicely to block-
oriented storage hardware where I/Os must be aligned.
System rules governing disk layout are much simpler as
a result, and an appropriate block size can be chosen to
manage internal fragmentation and index size.

Unfortunately, inserting or deleting data at the middle
of a stream is difficult for a fixed-size-chunking system
to handle—all data that comes after the insertion/dele-
tion is shifted, affecting the boundaries of all subsequent
chunks. The rest of the file must be rehashed, creat-
ing many “unique blocks” even though the data has not
changed. Despite this so-called boundary shifting prob-
lem, fixed-size chunking still typically has better dedupli-
cation ratios than whole-file deduplication.

The next strategy, variable-sized chunking, gracefully
handles both insertions and deletions.

Variable-sized chunking. A system that uses variable-
sized chunking divides its data into potentially many, po-
tentially small chunks in an attempt to maximize the shar-
ing opportunities. The locations of chunk boundaries are
determined by a computation over the data itself, which is
why variable-sized chunking is also referred to as content
defined chunking.

Content-defined chunking often yields the highest
deduplication ratios. Like fixed-size chunking, variable-
sized chunking creates many small segments, so there are

many opportunities to share data among the logical ob-
jects in the system. Content-defined chunking also grace-
fully handles sharing in the case where new data is in-
serted into a stream; only the modified chunk (and poten-
tially its neighbors) must be re-chunked and re-hashed in
the common case [10]]. (For more details, a variable-sized
chunking example is shown in the LBFS case study.)

Despite its higher deduplication ratios, content-defined
chunking introduces several costs into the end-to-end
deduplication workflow. First, work must be done to iden-
tify the chunk boundaries. One popular strategy is to com-
pute Rabin fingerprints [[12] over a sliding window of the
data. When the computation in a given window matches
a target value, a chunk boundary is created. By chang-
ing the window size, we can change the target size of our
chunks, giving us more control over the system’s behav-
ior.

The overheads that content-defined chunking adds to
the cost of storing and querying the fingerprint index are
more subtle. The more chunks there are in the index,
the larger the indexing data structure becomes; for even
modest data sets, the index may exceed the size of RAM
and spill onto disk. This problem is compounded by the
fact that fingerprint index queries have almost no locality
of reference—a collision resistant hash is independently
and uniformly distributed, so data that has locality in the
workload does not have locality in the index. As index
sizes grow, each look-up requires one or more disk seeks,
introducing the chunk index disk bottleneck [16].

2.2.3 Where?

A third design decision is where to perform deduplication.

Source deduplication describes systems where an in-
dex is maintained or queried locally, and data is examined
for duplicates before being sent to a remote server for stor-
age. Data transfer is minimized because duplicate data is
never transmitted across a network in source deduplica-
tion.

Destination deduplication systems remove the dedu-
plication process from the client; all deduplication is done
remotely. Destination deduplication minimizes client
computation at the cost of network bandwidth.

In some systems [|14]], a lightweight index is used to
check for existence at the source, but location data is
maintained at the destination. The choice of source or des-
tination deduplication determines where system resources
must be allocated (should we have one very powerful sys-
tem that is used as the destination, or should each local
system dedicate a small amount of resources for its own

work?). Location may also be determined by system con-
straints; general purpose workstations may not be well-
equipped to meet deduplication requirements.

3 Case Studies

In this section, we discuss deduplication use cases and
a few representative systems that target those use cases.
Hopefully, the discussion highlights the properties of
those workloads that lend themselves to different design
decisions.

Table [T] provides a classification of a handful of sys-
tems. For each system, the system is categorized along
the dimensions we’ve described above: where it performs
deduplication (source or destination), what it deduplicates
(chunking strategy), and the structure of its fingerprint in-
dex. Table [T] shows the diversity of design choices that
systems make.

3.1 Archival

Perhaps the most frequent (and important) use case for
data deduplication is data backup. In many indus-
tries, companies are required to maintain comprehensive
records of old data, and keep that data for many years, in
order to comply with government regulations. The char-
acteristics of these large-scale data backups are drastically
different from the workloads seen on single-user worksta-
tions in several important ways:

* a backup operation is a large streaming write, with
no random accesses or reads

* abackup must complete in its entirety in a given win-
dow, often as a nightly process

 once written, the data in a backup will never change
(it is immutable)

* data may be read in the future, but rarely (data is
“cold storage”). Backups are often accessed only
in emergencies or in “offline settings”, like an audit,
where latency is not the primary performance con-
cern.

* data must always be accessible in its original form

* the aggregate volume of data will only ever grow—
the system’s capacity should be incrementally scal-
able

These archival workloads often prioritize deduplication
ratio, favor throughput over latency, require resilience to
data loss, and must scale extraordinarily well.

3.1.1 Case Study: Venti

Venti [11] is an early implementation of a content address-
able archival repository, shareable among multiple clients.

Venti implements a write once policy — once written,
data cannot be modified or deleted by a user or adminis-
trator. The decision to archive data is permanent.

Venti writes data to an append-only log, divided into
fixed-size, logical containers termed arenas. Data blocks
may be variable sized, but the append only nature of are-
nas prevents physical fragmentation. Each data block
is stored with an associated header. The header lists,
among other information, whether or not the data was
compressed and with what algorithm. A list of the head-
ers for all data the arena contains is replicated at the end of
each arena. When an arena is filled, it is sealed — never
to be modified again.

An on-disk hash table is used as the fingerprint index,
and it is stored separately from the log. Hash buckets,
which are used to resolve collisions, occupy an entire disk
block, with any excess fingerprints written to subsequent
blocks. Thus, every index query requires at least one disk
seek, but often only one seek.

Separating the index from the block store allows Venti
to maintain flexible storage policies. The block store is
kept on a RAID, providing fault tolerance through parity.

Venti is not a full backup solution—it is merely a back-
end block store that can be used as one component of a
complete system. Mappings from files to their logical
chunks must be maintained externally. We observe this
pattern in many deduplication systems. A storage back-
end is optimized for expected access patterns, and over-
laid with client file system structures.

3.2 Minimizing data transfer

Persistent storage is not always the most constrained sys-
tem resource. This subsection studies the application of
deduplication techniques to data written over the network,
as opposed to a rotating disk. In this scenario, systems
may choose to trade CPU and memory for bandwidth sav-
ings.

3.2.1 Case Study: LBFS

The low bandwidth file system (LBFS) [|10]] is a network
file system. Clients cache some data on their local ma-
chines, but the authoritative versions of the system’s data
are kept on a centralized server.

LBFS minimizes network transmission at all costs.
LBFS prioritizes deduplication ratio and relies heavily on
client-side caching in order to achieve these goals.

LBFS was the first system to propose variable-sized
chunking, although they did not use that name at the time.
In the paper, the authors referred to variable-sized chunk-
ing as the sliding window method (SW), which is shown
in Algorithm[I] SW has two parameters: window size w,
and target pattern size . SW computes a fingerprint over

System Deduplication | Chunking Index Keywords
Location
Venti [[11] destination N/A (variable) on-disk hash ta- | write-once policy, append-
ble only arena, data compres-
sion
Deep Store | destination variable local hash struc- | rich metadata, delta encod-
[15] ture, distributed | ing, compression
hash table
Hydrastor destination variable (Rabin) distributed hash | resiliency classes, erasure
[4] table codes, continuous operation
| LBFS [10] hybrid variable (Rabin) legacy DB content defined chunking,
modified NFS, resource
trade-off
Data Do- | destination variable (Rabin) tiered: Bloom | locality-preserving cache,
main [16] filter, locality | stream informed segment
preserving cache, | layout, disk bottleneck
legacy DB
Sparse destination (hy- | variable (two | in-memory, sam- | sampling, sparse index,
Indexing [8]] | brid) thresholds, two | pled chunk locality
divisors)
PRUNE [9] | destination variable (INC-K) partitioned index | INC-K, tablet, partitioned
(tablets) index
HydraFS destination variable (Rabin) distributed hash | familiar file system API over
[13] table Hydrastor backend
| SIS (Win- | source N/A (whole-file) database file links with copy seman-
dows tics, copy-on-close
2000) [2]

Table 1: A categorization of example deduplication file systems.

all overlapping w-width byte ranges (hence, the name slid-
ing window: the first window spans from bytes [0, w], the
next window from bytes [1, w+1], and so on). When the
value of the fingerprint’s ¢ low-order bits are equal to 0,
SW defines a break point (i.e., a chunk boundary) at the
last byte in w. SW then shifts the window right by w bytes,
and repeats the process until reaching the end of the file.

Algorithm 1 - Sliding window method
1: param NUMERIC w,t

2: param FILE f
3: INTi<0
4: while (i+w) < |f| do
5.t < FINGERPRINT(f[i,...,i+Ww])
6: ift =0 then
7: define chunk boundary at f[i + w]
8: i+—i+w
9: else
10: i+—i+l1
11: endif
12: end while

A negative binomial distribution allowing r failures has
a mean of (pr)/(1— p), so the sliding window method
yields an expected chunk size of 2' — 1 +w. LBFS selects
t = 13,w =48, for an expected chunk size of ~ §K. Thus,
the calculation of a single chunk boundary requires ~ 8K
individual fingerprint calculations.

Fortunately, Rabin fingerprints [|12] are a reasonably ef-
ficient choice for chunking calculations because their cal-
culation is incremental. Large parts of a Rabin fingerprint
computation for one window can be reused in the compu-
tation for the next overlapping window. Note that Rabin
fingerprinting is used to identify chunk boundaries, not to
uniquely identify block contents. Deduplication requires
that each chunk be separately fingerprinted with a crypto-
graphically strong hash, such as SHA-1, in order to prevent
collisions.

Variable-sized chunking presents an elegant solution
to the problem of data insertion. Recall that fixed-size
chunks are defined by byte offsets within a file. A file
f', produced by adding a single byte at the front of the
file f, might have no fixed-size blocks in common with
f because every block boundary is shifted by one. This
is called the boundary-shifting problem. In LBFS, this
would mean that the entire file would need to be re-
transmitted over the network, despite the fact that the data
exists in its entirety at the server (the file just has one new
byte at the front). If the system used variable-sized chunk-
ing (which it does!), it is likely that only one block would
need to be sent.

To see why, consider the three cases shown in Figure
where (1) data is inserted into the middle of a chunk, (2)
data is inserted that includes (or produces) a new chunk

boundary, and (3) data is inserted into a window that pre-
viously contained a chunk boundary. In (1), only the sin-
gle block containing the new data must be re-chunked.
In both (2) and (3), the containing block up to any new
boundary is fingerprinted, followed by the successor, un-
til an existing chunk boundary is encountered. LBFS only
transmits the new chunks across the network.

T

SN N |

Figure 1: Three cases of a small data insertion into an ex-
isting file with variable sized chunks. Windows that rep-
resent chunk boundaries are shown in gray. In the first
case, the insertion does not introduce any new chunks. A
new fingerprint must be taken for the containing chunk,
but no boundaries shift. In the second case, the insertion
causes an existing chunk to be divided into two. The final
example eliminates an existing chunk boundary, causing
two previously existing chunks to be merged. LBFS only
transmits new chunks across the network, reducing band-
width.

Two drawbacks to variable-sized chunking are an in-
creased computational burden (calculating the Rabin fin-
gerprints is not free) and a vulnerability bad behavior un-
der certain inputs. On one extreme, there are inputs that
would contain a chunk boundary every w bytes. It would
be less expensive to transmit the raw data than to trans-
mit the messages that identify these very tiny duplicate
blocks. On the other extreme, some data streams could
produce no internal chunk boundaries. Notably, a se-
quence of all 0’s has this property: since every window
is identical, there would be no boundaries in any of them.

To combat this, LBFS defines a minimum chunk size of
2KiB and a maximum of 64KiB to handle these degener-
ate cases: the sliding window algorithm starts at an offset
of 2KiB instead of 0, and after 64K, an artificial boundary
is inserted whether a match is found or not.

4 Improving Dedup Systems

The two primary factors that influence a system’s dedupli-
cation efficiency are the chunking method and the index
management. Although related—the average chunk size
affects the index size—the index and chunking algorithm
can be optimized separately.

This section presents two case studies that improve
upon the basic strategies we’ve discussed so far. In Sub-
section 4. 1] we introduce the disk-bottleneck problem and
we discuss the various techniques that the Data Domain
deduplication system [|16]] introduces to manage it. In sub-
section[4.2] we briefly discuss optimizations to the sliding
window algorithm and Rabin fingerprinting.

4.1 The Disk Bottleneck: Efficient Indexing

Each unique chunk that we add to our system requires
a corresponding (hash, location) entry be inserted to
the system’s fingerprint index. Even for modest data sets
(and we’ll use modest as a relative term), the size of the
fingerprint index can exceed the size the system’s RAM.
Let’s consider a chunk store with 20TB of unique data: if
the fingerprint index only stores each chunk’s SHA-1 hash
(20B) an average chunk size of 4KB would result in a
100GB index!

In general, caching is the technique we use to improve
our performance whenever our data structures exceed the
bounds of our memory. Our standard caching techniques
typically rely on good locality to be effective (spatial
and/or temporal locality). Unfortunately, we’ve seen that
SHA-1 fingerprints are independently and uniformly dis-
tributed, and as a result, fingerprint index queries have
no locality of reference. If we naively apply standard
caching techniques to our fingerprint index, they will per-
form poorly, and each lookup will still require an expen-
sive disk seek. This problem is referred to as the disk-
index bottleneck problem, and it is the problem that the
Data Domain deduplication system [[16] sets out to solve.

4.1.1 Case Study: Data Domain

The Data Domain deduplication system introduces a
three-tiered system to efficiently manage its fingerprint in-
dex queries (the tiers are described below). The overall
system goals are to: (1) minimize the number of on-disk
index lookups, and (2) make sure that any work that is
done when an on-disk lookup is necessary also helps with
satisfying future queries.

Figure (3| shows the possible paths of a fingerprint
lookup through the three tiers, which are described in
more detail below.

Tier 1: summary vector. The first level is the sum-
mary vector, a simple Bloom filter [1] that stores the set
of all chunk fingerprints in the system. Looking up a fin-
gerprint in the summary vector isn’t perfect, since false
positives are possible. But, we do know that any time the
Bloom filter says that a fingerprint is absent, we are guar-
anteed that we don’t need to look up that fingerprint on
our disk. If our Bloom filter returns present, we advance
to level two.

Tier 2: locality preserving cache. The second tier is
the locality preserving cache (LPC) which is an in-
memory hash table. This hashtable contains full finger-
print index entries, but the caching/eviction policies that
move fingerprints into and out of the LPC do so in large
groups. If our lookup hits in the LPC, we are done. If our
lookup misses in the LPC, the lookup proceeds to the final
tier, the actual on-disk index.

Data
(Chunks from a single stream)

8 R

Figure 2: Container abstraction. Data from a single
stream is chunked and appended to a until the container
is filled. Chunk descriptors are stored contiguously at the
end of a container, in order to be efficiently read into to the
locality preserving cache. Containers are self-describing.

Metadata
(Segment Descriptors)

Tier 3: stream-informed segments. One key observa-
tion is that the actual backup data stream has good locality
over time. For some intuition, consider a nightly backup
of the contents of your laptop. Many files continue to ex-
ist between backups (unless the file is new, it was present
in the previous backup). And the files that do change will
typically have many of the same contents in consecutive
versions, with a few new chunks that have the modifica-
tions.

Thus, Data Domain’s on-disk format divides the data
into containers that store a group of chunks from the same
stream (along with their fingerprints). Data Domain refers
to this as the stream informed segment layout (SISL).
The on-disk container layout is depicted in Figure[2] The
metadata for each chunk is kept at the head of the con-
tainer. The metadata (called segment descriptors) are the
fingerprint/chunk pointers mappings that make up the fin-
gerprint index.

When a miss occurs in the LPC, the system must go
to the disk to find the fingerprint’s container. But instead
of just reading that one fingerprint, the system prefetches
the fingerprints for all members of that container into the
LPC. In this way, the disk seek that was done to fetch one
entry is used to preload many candidates that will hope-
fully create cache hits on future lookups.

START

Read request
for chunk
fingerprint

Figure 3: The Data Domain file system mitigates the disk bottleneck with its three-tiered architecture. The first level
is a Bloom filter, which provides efficient in-memory approximate membership queries. A positive Bloom filter hit
triggers a lookup in the in-memory locality preserving cache. A miss in the locality preserving cache finally results in
an index lookup. Instead of reading just the requested fingerprint, all chunk descriptors from the containing segment
are read into the locality preserving cache, evicting the oldest set of segment chunk descriptors.

The summary vector, LPC, and SISL work together to
reduce aggregate disk seeks for backup workloads. They
are effective as a unit because each component fills a
different role, the relative importance of which changes
over time. The summary vector filters queries for new
data blocks, which are common during an initial backup;
however, fewer new blocks are seen thereafter. LPC
prefetching loads the previously encountered block fin-
gerprints from a single container into the cache. The LPC
is most effective for data that has been previously stored
and rarely changes. The LPC and SISL rely on chunk
locality within the backup stream. Chunk locality is a
reasonable assumption for backup workloads where files
change incrementally. However, for frequently changing
files, chunk locality LPC prefetching populates the cache
with unrelated chunk fingerprints.

Together, the three techniques removed up to 99% of

disk accesses for index lookups in two real deduplication
workloads. That is an incredible result for a real sys-
tem, and it is one of the reasons why this paper won the
USENIX test of time award for being so influential, even
today.

4.2 Chunking

Since chunking is the division of a data stream into one
or more segments, and the segment is the granularity at
which data is stored and redundant data detected, chunk-
ing, perhaps more than any other system component, af-
fects the system’s deduplication ratio.

There are two dimensions in which to evaluate a chunk-
ing algorithm: runtime performance and chunk quality.
Section §4.2.1] describes the two thresholds, two divisors
(TTTD) algorithm [5]. TTTD reduces chunk size vari-

ance, so that most chunks are about the same size. As a
result, it lowers the overhead introduced by small modifi-
cations.

The comparison of the runtime performances of two
chunking methods is difficult. The speed of identifying
boundaries can be directly compared, but a system that
identifies more shared data will save disk I/O of dupli-
cate writes. TTTD provides more uniformly sized chunks,
which lowers the overall overhead of data insertions, but
does so at the cost of additional computations.

4.2.1 Case Study: Two Thresholds Two Divisors

The two thresholds, two divisors algorithm (TTTD) is a
generalization of the standard sliding window algorithm
(SW) introduced by LBFS [10] and described in Section

SW has two explicit parameters: window size w, target
t, in addition to divisor D. LBFS observed that for some
inputs, SW produces very small or very large chunks.
LBFS enhanced the algorithm with minimum and max-
imum chunk size thresholds (7}, and T.y) to bound the
chunk size range. TTTD again extends the algorithm and
adds a second divisor D',

For window W and target ¢, we say a fingerprint match
against divisor D occurs if

FINGERPRINT(W) modD =t (2)

The TTTD algorithm slides a fixed-length window W
across the data stream byte by byte, starting at Tj,;,,. TTTD
checks for a fingerprint match against D and D’ at each
position. A fingerprint match against D immediately halts
execution and defines a chunk boundary. A fingerprint
match against D' is saved for future use. TTTD contin-
ues until reaching T},,x. The most recent fingerprint match
against I, if any, defines the chunk boundary. Otherwise,
a boundary is inserted at Tj.

Adding a second divisor reduces chunk size variance:
fewer boundaries are defined by Tj,.. Chunks defined by
T..x are fixed-size chunks, and therefore suffer from the
boundary shifting problem. TTTD reduces the overhead
of data that is replicated not because it is redundant, but
because a chunk modification disassembled its previous
chunk. An appropriate choice of D’ reduces the overhead
of the second check.

5 Conclusion

This survey presented a broad overview of the deduplica-
tion system design space. It talked about key parameters
that are common to many deduplication systems, and it
used several case studies as a way to present the common
problems that deduplication systems must solve. There

are many other areas of interest that this survey did not
cover but that deduplication researchers continue to ex-
plore. Restore throughput, sketching, data migration, and
even alternative strategies for removing redundancy (e.g.,
generalized deduplication or delta compression) are all
active areas of research that are of interest to academics
and industry alike.

References

[1] B.H. Bloom. Space/time trade-offs in hash coding with allowable
errors. CACM, 13(7):422-426, jul 1970.

[2] W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur. Single
instance storage in windows 2000. In WSS, pages 13-24, 2000.

[3] O. P. Cox, C. D. Murray, and B. D. Noble. Pastiche: making
backup cheap and easy. In OSDI, pages 285-298, 2002.

[4] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian,
P. Strzelczak, J. Szczepkowski, C. Ungureanu, and M. Welnicki.
HYDRAstor: a scalable secondary storage. In FAST, pages 197—
210, 2009. 3]

K. Eshghi and H. K. Tang. A framework for analyzing and im-
proving content-based chunking algorithms. HP Laboratories Palo
Alto HPL-2005-30R1, 2005. [§]

L. Freeman. Looking beyond the hype: Evaluating data dedupli-
cation solutions. Netapp White Paper, September 2007. E]

[5

=

[6

=

[7

—

D. Geer. Reducing the storage burden via data deduplication. Com-
puter, 41(12):15-17, Dec. 2008.
M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise,

and P. Camble. Sparse indexing: large scale, inline deduplication
using sampling and locality. In FAST, pages 111-123, 2009. [j]

[9] J. Min, D. Yoon, and Y. Won. Efficient deduplication techniques
for modern backup operation. TC, 60(6):824-840, june 2011.

B
A. Muthitacharoen, B. Chen, and D. Maziéres. A low-bandwidth
network file system. In SOSP, pages 174-187, 2001. 2]] @ B 0]

S. Quinlan and S. Dorward. Venti: A new approach to archival
storage. In FAST, pages 89-101, 2002. R1E] 3]

M. O. Rabin. Fingerprinting by random polynomials. Harvard
Aiken Computational Laboratory TR-15-81, 1981. 3] [g]

C. Ungureanu, B. Atkin, A. Aranya, S. Gokhale, S. Rago,
G. Calkowski, C. Dubnicki, and A. Bohra. HydraFS: A high-
throughput file system for the HYDRAstor content-addressable
storage system. In FAST, pages 225-238, 2010. [3]

Y. Won, J. Ban, J. Min, J. Hur, S. Oh, and J. Lee. Efficient index
lookup for de-duplication backup system. In MASCOTS, pages
1-3, sept. 2008. 3]

L. You, K. Pollack, and D. D. E. Long. Deep Store: An archival
storage system architecture. In IDCE, pages 804-815, 2005. P] B
B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck in the

data domain deduplication file system. In FAST, pages 269-282,
2008. BB

[8

—_

[10]

(11]

[12]

[13]

[14]

(15]

[16]

	Document Overview
	Introduction
	Deduplication in a nutshell
	Design Choices
	When?
	What?
	Where?

	Case Studies
	Archival
	Case Study: Venti

	Minimizing data transfer
	Case Study: LBFS

	Improving Dedup Systems
	The Disk Bottleneck: Efficient Indexing
	Case Study: Data Domain

	Chunking
	Case Study: Two Thresholds Two Divisors

	Conclusion

