Crash Consistency

CS333
Williams College

This Video

e Challenges of Maintaining FS Consistency

e Redundancy & Invariants

* Two techniques for Maintaining Consistency

* File system checkers (f£sck)

* Logging (journaling)

Redundancy is Everywhere

* Use explicit redundancy to safeguard important data
* E.g, RAID (mirroring and parity), duplicating superblock

* Also have implicit redundancy in FS data structures

e E.g, Block allocation information:

* Inodes & indirect blocks store pointers to valid data blocks,
implicitly representing allocation status

e Bitmaps store allocated/free status explicitly
* E.g., Link counts:

* |node stores link count

* Can traverse directories and count entries

Downsides to Redundancy

* Woasted space

* Although we’re often happy to trade space for
performance or safety, there are limits

 Difficulty of maintaining invariants

e Disk guarantees that we can write individual sectors
atomically

* If redundant/dependent information spans more than one
sector, a crash in the middle of some logical update can
leave our system in an inconsistent state

y DO

Implications of Crashes

e Think about the data structures that are
updated when we append data to a file

|. Data bitmap to allocate a new data block
2. Thefile’s inode to update block pointer/size/etc.
3. The new data block itself

* Suppose we crash after any step above
e After data bitmap: unreachable “allocated bIock”x
» After writing inode: pointer to uninitialized data x
o After writing data: Nothing. It’s ok to crash heren/’

Strategies to Avoid Inconsistency

* Ignore the issue until a crash occurs, then fix
any issues that might have arisen

* This is the approach that file system checkers like
fsck (commonly pronounced “eff-sick”, “eff-

suck”, “eff-ess-see-kay”’) take

* Do some extra bookkeeping before making
changes to our system so that if we crash in
the middle, we can refer to our notes and
complete the operation

* This is the approach that logging (journaling) takes

Consistency Strategy |:

FILE SYSTEM CHECKERS

File System Checkers

* Scan the file system metadata and check that
all invariants are held

* Pause the system so no-one makes any changes
during our scan

* |f we detect any inconsistencies, fix them (as best
as we can)

Example Invariant Check:
Incorrect Link Count

inode

link count = |

How do we fix this to make our file system consistent?

Example Invariant Check:
Incorrect Link Count

inode

link_count =

How do we fix this to make our file system consistent?

We count all directories that refer to each file and update
the link count. s this correct?

Example Invariant Check:
Data Bitmap

inode block
link_count = | (number 123)

data bitmap
0011001100

for block 123

How do we fix this to make our file system consistent?

Example Invariant Check:
Data Bitmap

inode block
link_count = | (number 123)

data bitmap
001100110H

for block 123 .
Is this correct!?

How do we fix this to make our file system consistent?

We scan all inode direct and indirect pointers and keep track
of which blocks are allocated. Then update our bitmaps.

Example Invariant Check:
Duplicate Pointers

inode block
link_count = | (number 123)

inode
link_count = |

How do we fix this to make our file system consistent?

Example Invariant Check:
Duplicate Pointers

inode block
link_count = | (number 123)

inode
link_count = |

How do we fix this to make our file system consistent?

Two files can’t share the same block, so we copy the block and
have each inode point to a copy.

Example Invariant Check:
Duplicate Pointers

inode block
link_count = | (number 123)

Copy

inode block
link_count = | (number 456)

How do we fix this to make our file system consistent?

Two files can’t share the same block, so we copy the block and
have each inode point to a copy.

Example Invariant Check:
Duplicate Pointers

inode block
link_count = | (number 123)

inode block
link_count = | (number 456)

How do we fix this to make our file system consistent?

Two files can’t share the same block, so we copy the block and
have each inode point to a copy. Is this correct!?

Example Invariant Check:
Bad Pointer

inode %
link_count = | 9999

super block
Total blocks=8000

How do we fix this to make our file system consistent?

Example Invariant Check:
Bad Pointer

inode
link_count = |

super block
Total blocks=8000

How do we fix this to make our file system consistent?

We update the inode to remove the pointer.
s this correct!

FSCK problems

* It’s not always obvious how to fix a problem

* We may become consistent, but we may lose data

e Strawman fix: erase our FS

e FSCK is slow

* Traversing our data structures scales with our file
system size

* We can’t make progress while FSCK is running

Consistency Strategy 2:

LOGGING (JOURNALING)

Logging Strategy

When the system receives an update request
|. “Make notes” about the required changes
2. Perform the update

3. Delete the (now redundant) notes

* |f the system crashes between steps | and 2, we can
consult our notes and recover

* We are always either left in a consistent state or left
with the information we need to restore our system
to a consistent state.

Atomicity

* Logging gives us a way to ensure atomicity

* If an operation should take our system from some
state A to another state B, then our system is
always either in state A or in state B.

* We are never exposed to an intermediate state, or to
a state that is neither A nor B.

* These guarantees are much stronger than
what we get with FSCK
e FSCK gives consistency.

e Atomicity gives correctness.

LOGGING EXAMPLE

Updating Dependent Data
Without Logging

Want to replace X with Y.

DISK

Updating Dependent Data
Without Logging

Want to replace X with Y.

DISK Could we survive
a crash at this point?

Yes!

Updating Dependent Data
Without Logging

Want to replace X with Y.

DISK Could we survive
a crash at this point?

No!

Updating Dependent Data
Without Logging

Want to replace X with Y.

DISK Could we survive
a crash at this point?

Yes!

Preserving Invariants with
Logging

Want to replace X with Y. Logging:

DISK

Preserving Invariants with
Logging
Want to replace X with Y. Logging:

DISK Could we survive
a crash at this point?

Yes!

Preserving Invariants with
Logging
Want to replace X with Y. Logging:

DISK Could we survive
a crash at this point?

Yes!

Preserving Invariants with
Logging
Want to replace X with Y. Logging:

DISK Could we survive
a crash at this point?

Yes!

Preserving Invariants with
Logging
Want to replace X with Y. Logging:

DISK Could we survive
a crash at this point?

Yes!

Preserving Invariants with
Logging
Want to replace X with Y. Logging:

DISK Could we survive
a crash at this point?

Yes!

Preserving Invariants with
Logging
Want to replace X with Y. Logging:

DISK Could we survive
a crash at this point?

Yes!

We could survive a crash at any point in time because
our log lets us recover.

Logging Considerations

* If we log everything, we write all data twice

 This halves our performance!
* (This is OK in algorithms, but not in systems)
e Common solution: only log metadata

* We may lose data, but we will always be consistent

* Another approach is to use a logical log

* Instead of storing final values in our log, we encode just
enough information needed to describe the change

e Can be more complicated, but may yield some gains

Logging Considerations

* If we crash in the middle of a logging
operation, how do we know?

* We add a commit entry at the end of our log
transaction. Logging becomes:
|. WVrite a transaction begin record
2. Write log entries

3. Write a transaction end record

* |f we don’t see a corresponding pair of transaction
begin/ends, we don’t try to replay that log

Summary

* File system checkers let us confirm our
system is consistent, and recover from some

types of inconsistencies

e Problem: The cost of a system-wide check is
expensive, and the guarantees are not strong

* Logging lets us transition from consistent state
to consistent state as a series of checkpoints
* The overheads per operation can be high

e Commonly mitigated by only logging metadata

Summary (continued)

* Many file systems use logging (journals)

e Often in metadata-only mode

* Other techniques also exist
e Copy-on-write

e All data is written to a new location, and then a
“pointer swap” transitions to new version

* Soft updates

e Carefully ordering updates to structures in a way that
avoids inconsistencies

* Difficult to get right, not ubiquitous in practcice

