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How do you keep data
organized?



Analogy from [Comer Rl

Filing cabinet with folders of employee records,
alpha-sorted by employee last name

+ We often think in terms of keys and values
» Keys are the employees’ last names
» Values are the employee file (held in a folder, one per employee)

» A filing cabinet supports two types of searches
» Sequential
» read through every folder in every drawer in order

» Random (targeted)
» use the labels on the drawers & folders to find the single record of interest



_Indexes (yes, colloquially pluralize

d that way)

i

Indexes organize data

- Random (targeted) searches utilize an index to:
» Direct our search towards a small part of the total data
» (Hopefully) speed up our search

Questions
» What operations does an index support?
» How do we quantify index performance”?
» Is the data part of the index, or does the index “sit on top of” the data?



What operations does an index support?

Operations
* Insert(k,v): inserts key-value pair (k,v)
 Delete(k): deletes any pair (k,*)
» PointQuery(k): returns all pairs (k,*)
- RangeQuery(ki,k2): returns all pairs (k,*), kisk<ko

In short, indexes support the dictionary interface.

 Often used for very large data sets.



__How to we quantity index perfor

mce?

Algorithmically, we can use the DAM model:
* Useful model in scenarios when data is too big for memory
» Data is transferred in blocks between RAM and disk.
* Premise: the number of block transfers dominates the running time.
» Searching through a given block is “free” (once in-memory)

Goal: Minimize # of 1/0s

* Performance bounds are parameterized by
block size B, memory size M, data size N.
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_DAM Model an Analysis

Analyze worst-case costs by counting I/Os

« B: unit of transfer
» B-tree node size

« M: amount of main memory
» We can cache M/B nodes in memory at once

* N: size of our data
» We're not worried about disk space, we use N to describe our tree

« We will think about the tree shape (node size, height,
fanout), then describe each operation’s cost in terms of the
DAM model



The B-tree



B-trees store records
« Records are key-value pairs

* We assume that keys are
» Unigue (to simplify analysis)
» Ordered



_Terms and Conditions

Rules for our B-trees

» B-ary tree
» Internal nodes have between d and 2d keys called pivots
» Must be half fulll

» At least d+1 pointers to children (one more pointer than pivot key)
- |f an operation would cause a violation of one of these
invariants, must rebalance the treel!

 Note: our B-tree’s internal nodes do not store records

» Option 1: Store (key, value) pairs in leaves
» Option 2: Store (key, pointer to value) in leaves




Several B-tree variants

« We will describe a “B?'+--tree” here, noting features of
specific variants as they come up

Popular Variants of B-trees
« B-tree: more-or-less what we’ll describe here
- B+-tree: B-tree where leaves form a linked list
- B'-tree: B-tree where nodes always 2/3 full



B-tree: standard DAM dictionary
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B-tree Point Queries



Steps

- Starting at the root, find the first pivot key that is larger than
your search key, and follow the pointer to its left

» If there are no pivot keys larger than your search key, follow the last
pointer

* Repeat until you arrive at a leaf node
- Search the leaf node (ordered list) for your target key
« Return the key-value pair (if found), or NONE

This work is done during an insert (need to

find place where new key-value pair
belongs), so we will walk through this then.




Cost

- How many nodes must be read/written in a search?
» We read the root node to search the pivot keys
» We recurse on the subtree

- Total cost of a search: O(h)
» Recall h = O(logsN)




B-tree Insertions



Steps
- Find the leaf node where your key-value pair belongs (point

query)
* Insert your key-value pair into that leaf



B-tree: standard DAM dictionary
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Splitting a B-tree node

Steps
- Sort all 2d+1 keys (2d + new key that causes overflow)
- Make new node with first d keys
+ Make new node with last d keys

« Move middle key as a pivot of the parent
- Add pointers to new children

- Recurse up the tree if necessary (rare)
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B-tree: standard DAM dictionary

B-ary search tree
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B-tree: standard DAM dictionary
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Splitting a

-tree node

Cost

- How many nodes must be read/written in a local split?
» We read the node being split
» We write the old node and the new node (first d keys, last d keys)
» We read/write the parent node

« What if we overflow the parent?

» If we recurse, we already read the parent, so we repeat the same steps
one level above

- Total cost of an insert: O(h)
» Reads: O(h)
» Writes: O(2h)



B-tree Range Queries



Range Query

(Range query: point query + successork)

Steps

» Find the leaf node where the first key-value pair belongs
(point query)

- Read all key-value pairs from that node that are part of your
range

« Consult your parent to find its next child pointer

- Read all key-value pairs from that node that are part of your
range

* Loop



Summary gllliRel:1aY Insert Delete Range Query
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B-tree Deletes



B-tree Deletions

Steps
- Search for the leaf containing the target key-value pair

(point query)
- Remove the element from the leaf (if present)

* |f the size of the node drops below d, merge with a
neighbor

» Remove extra pivot key and pointer from parent (the pointer to the node
that is being deleted as part of the merge)

» Merge contents of nodes
» Write parent and merged node
» If the parent size dropped below d, recurse upwards



B-tree: standard DAM dictionary
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B-tree: standard DAM dictionary

B-ary search tree

Too small!
Need to merge
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« B-trees are the de-facto search structure for external
memory applications

* Variants exist to tune utilization and range scan
performance, but the idea is the same

* We can analyze performance using the DAM model

Other discussions

- Concurrent access - how to lock the tree?
» Hand-over-hand locking for queries
» Reservations or top-down splitting

- How to choose the node size (B)?

» Must balance competing goals:
» Small B minimizes write amplification (each update requires writing whole node)

» Large B minimizes fragmentation (more data read per seek)



We presented B-trees because they are widely
used, but they also serve as a starting point to
discuss more recent advances in trees

* Log structured merge trees

« Be-trees

The above trees employ write optimization

» Better |/O performance for writes
» Not asymptotically worse off for reads



