Bε-trees

CSCI 333 Williams College

This Video

- B^ε-trees
 - Operations
 - Performance
- Choosing Parameters
- Compare to B-trees and LSM-trees

Big Picture: Write-Optimized Dictionaries

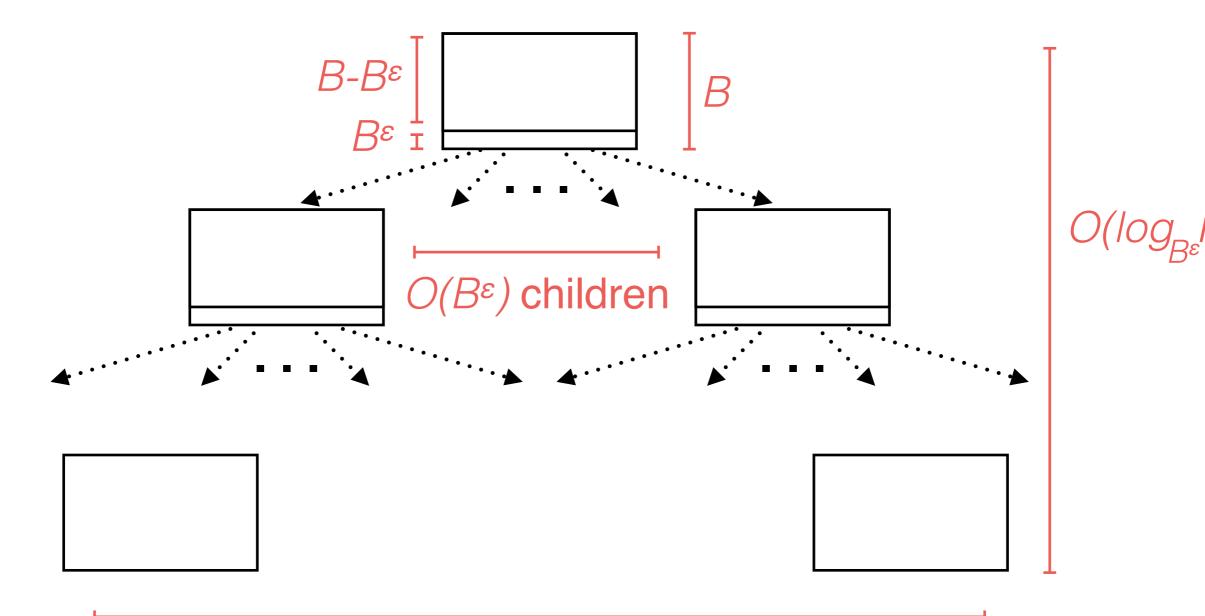
- New class of data structures developed in the '90s
 - LSM Trees[O'Neil, Cheng Gawlick, & O'Neil '96]
 - Be-trees[Brodal & Fagerberg '03]
 - COLAS[Bender, Farach-Colton, Fineman, Fogel, Kuzmaul & Nelson '07]
 - XDicts[Brodal, Demaine, Fineman, Iacono, Langerman & Munro '10]
- WOD queries are asymptotically as fast as a B-tree (at least they *can be* in "good" WODs)
- WOD inserts/updates/deletes are orders-ofmagnitude faster than a B-tree

Be-trees [Brodal & Fagerberg '03]

- B^ε-trees: an asymptotically optimal key-value store
 - Fast in best cases, bounds on worst-cases
- B^ɛ-tree searches are just as fast as* B-trees
- B^ε-tree updates are **orders-of-magnitude** faster*

B and ε are parameters:

- B ⇒ how much "stuff" fits in one node
- $\varepsilon \Rightarrow$ fanout \Rightarrow how tall the tree is



O(N/B) leaves

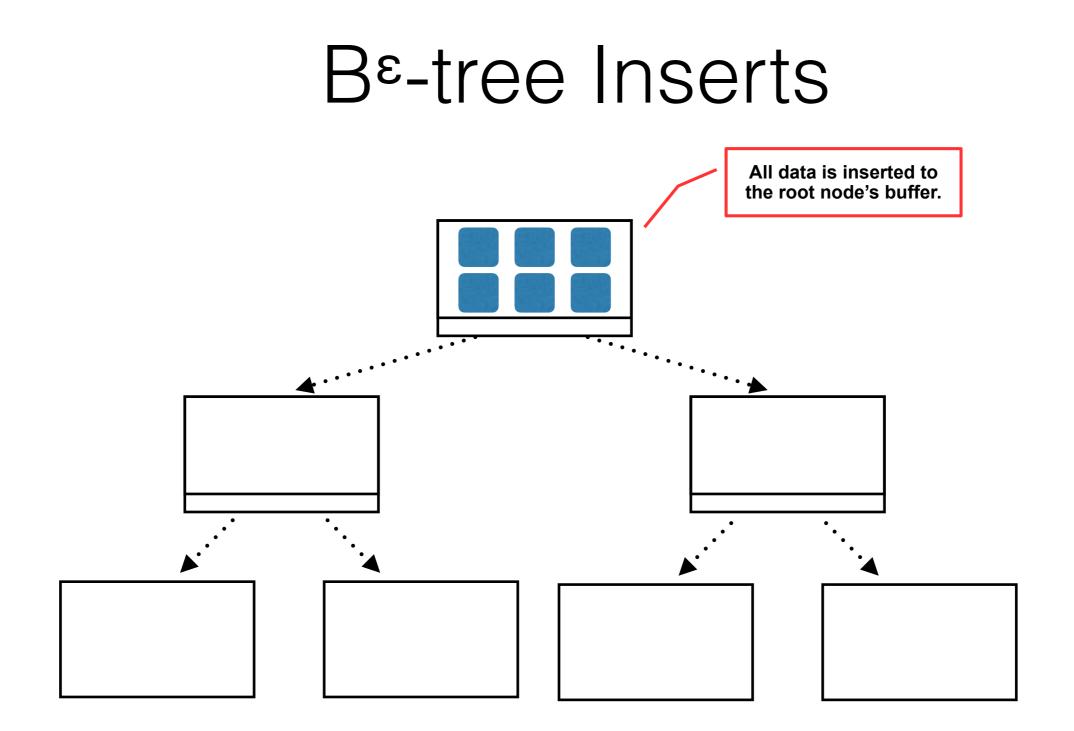
Be-trees [Brodal & Fagerberg '03]

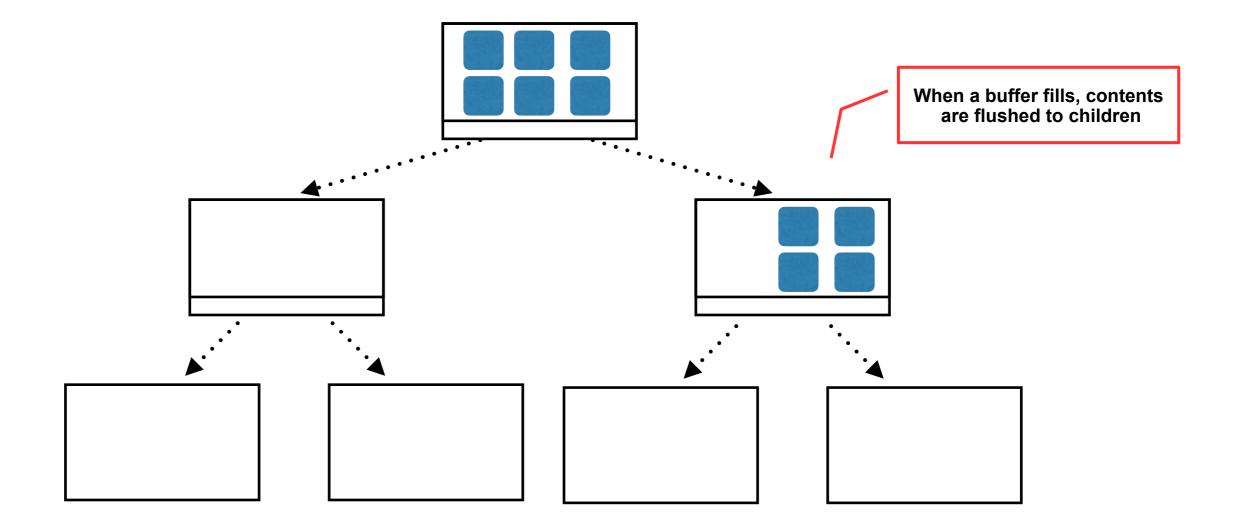
- B^ε-tree leaf nodes store key-value pairs
- Internal B^ε-tree node buffers store messages
 - Messages target a specific key
 - Messages encode a mutation
- Messages are *flushed* downwards, and eventually applied to key-value pairs in the leaves

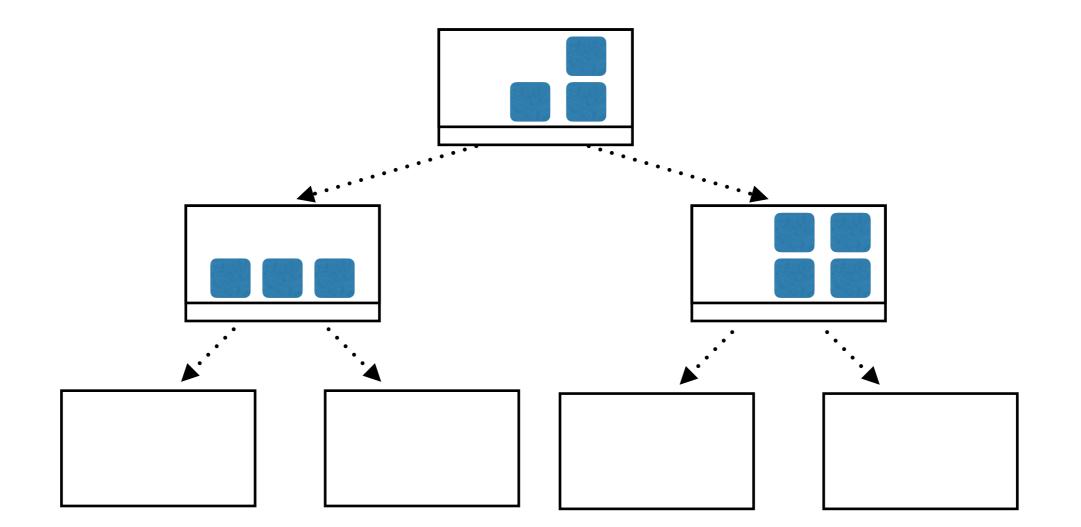
High-level: messages + LSM/B-tree hybrid

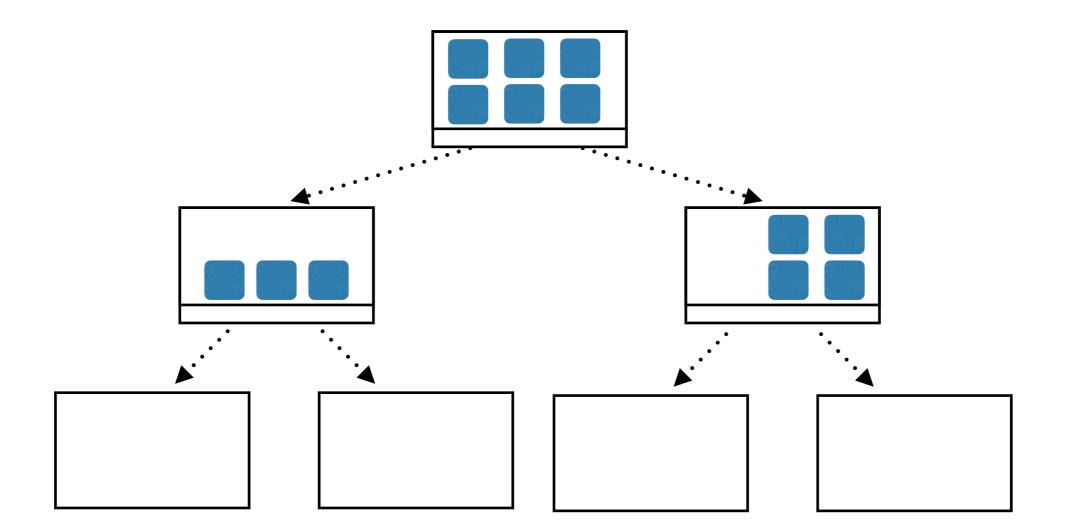
B^ε-tree Operations

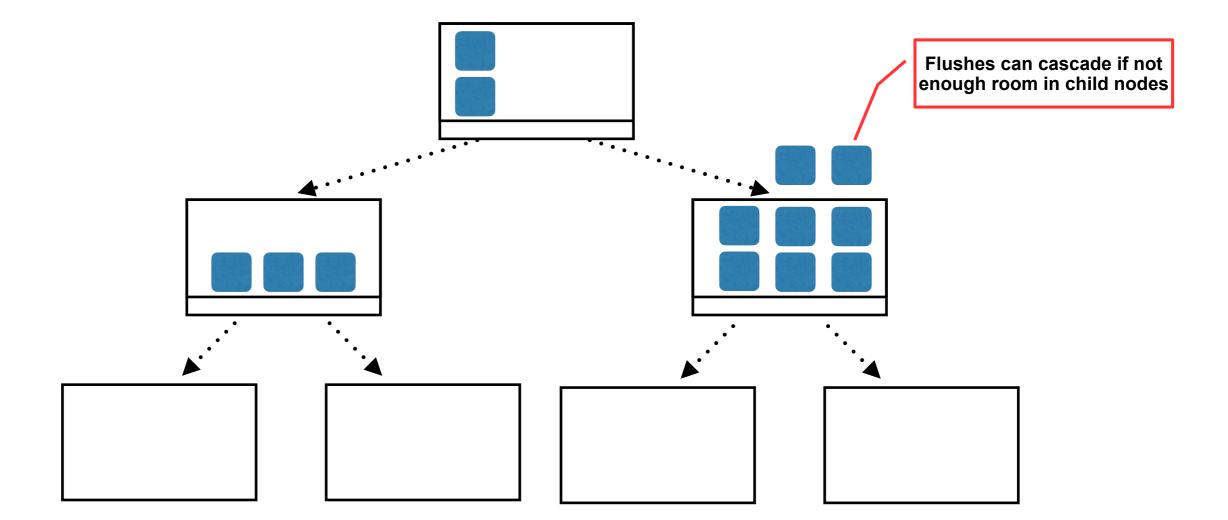
- Implement a dictionary on key-value pairs
 - insert(k,v)
 - v = search(k)
 - {(k_i, v_i), ... (k_j, v_j)} = search(k_1, k_2)
 - delete(k)
- New operation: • upsert(\mathbf{k} , f, Δ) Talk about soon!

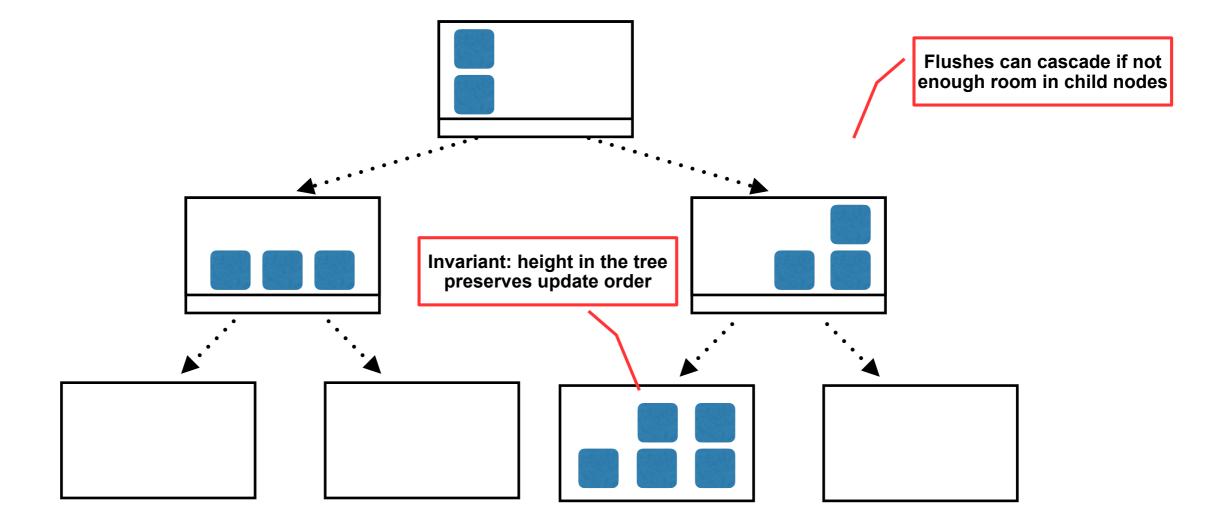














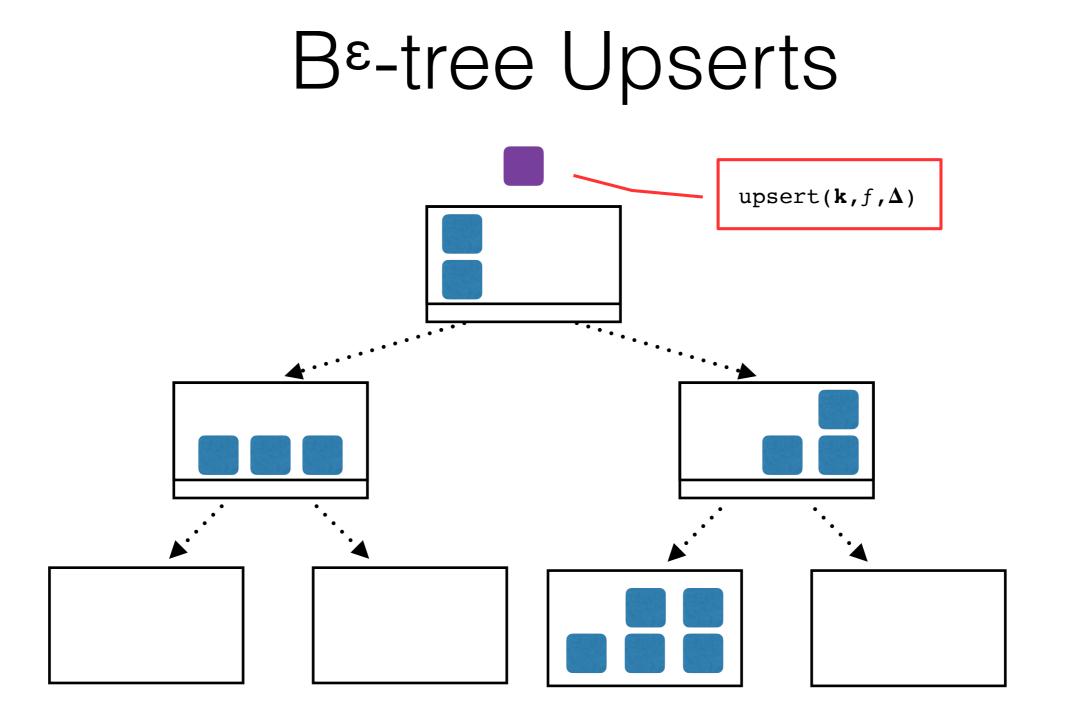
Updates

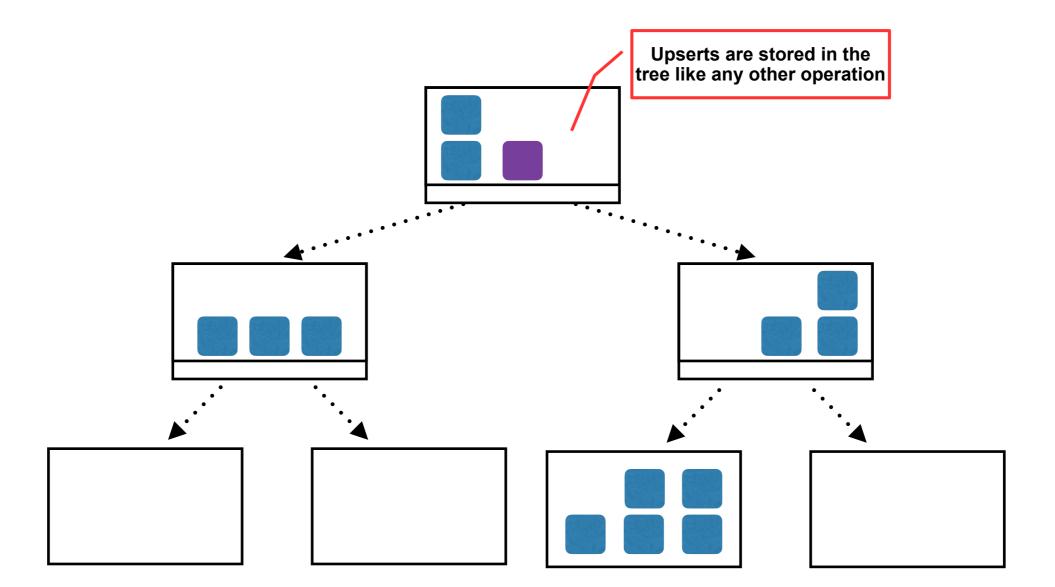
- In most systems, updating a value requires: read, modify, write
- **Problem:** B^ε-tree inserts are faster than searches
 - fast updates are impossible if we must search first

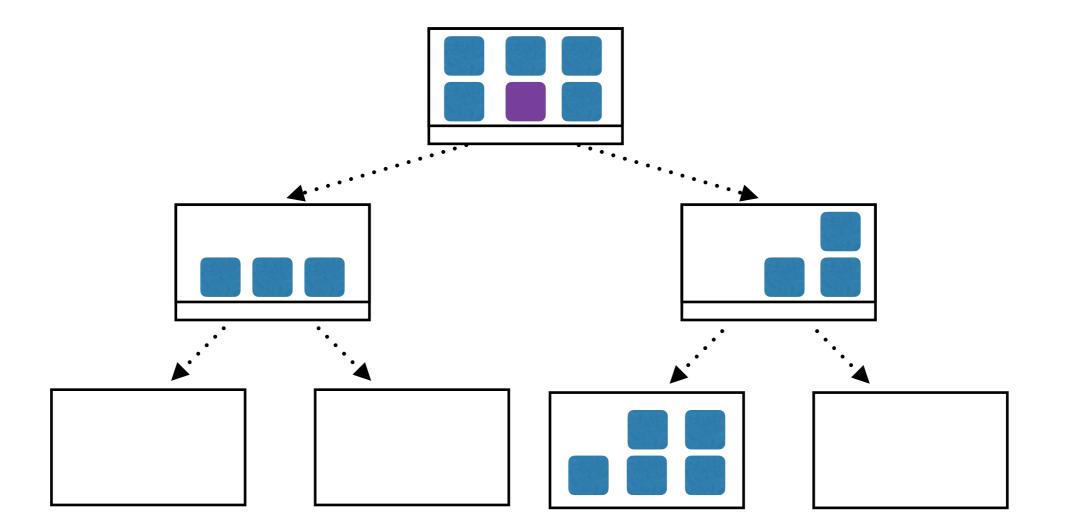
upsert = update + insert

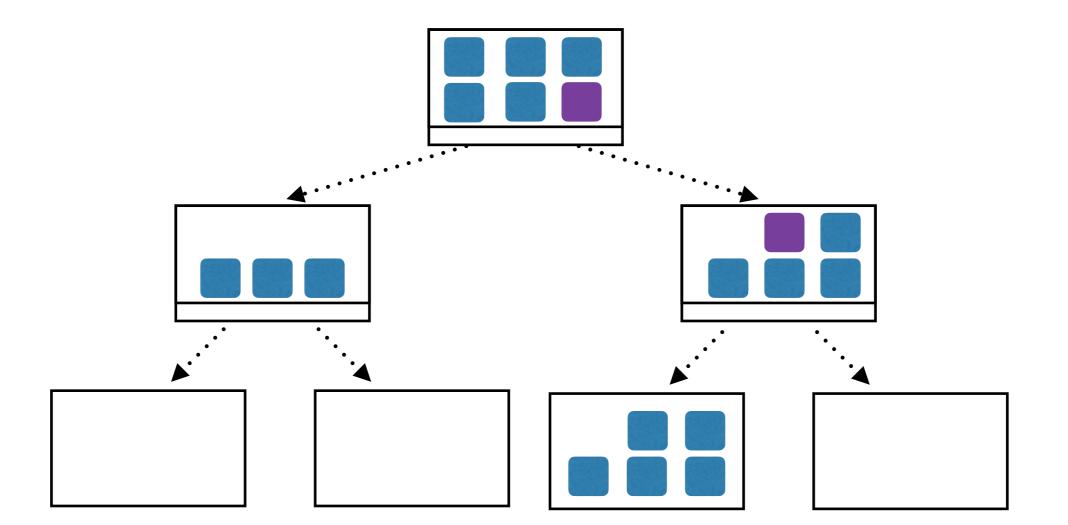
Upsert messages

- Each upsert message contains a:
 - Target key, **k**
 - Callback function, \boldsymbol{f}
 - Set of function arguments, $\boldsymbol{\Delta}$
- Upserts are added into the B^ε-tree like any other message
- The callback is evaluated whenever the message is applied
 - Upserts can specify a modification and lazily do the work
 - e.g., increment a counter, replace a string, update a byte range

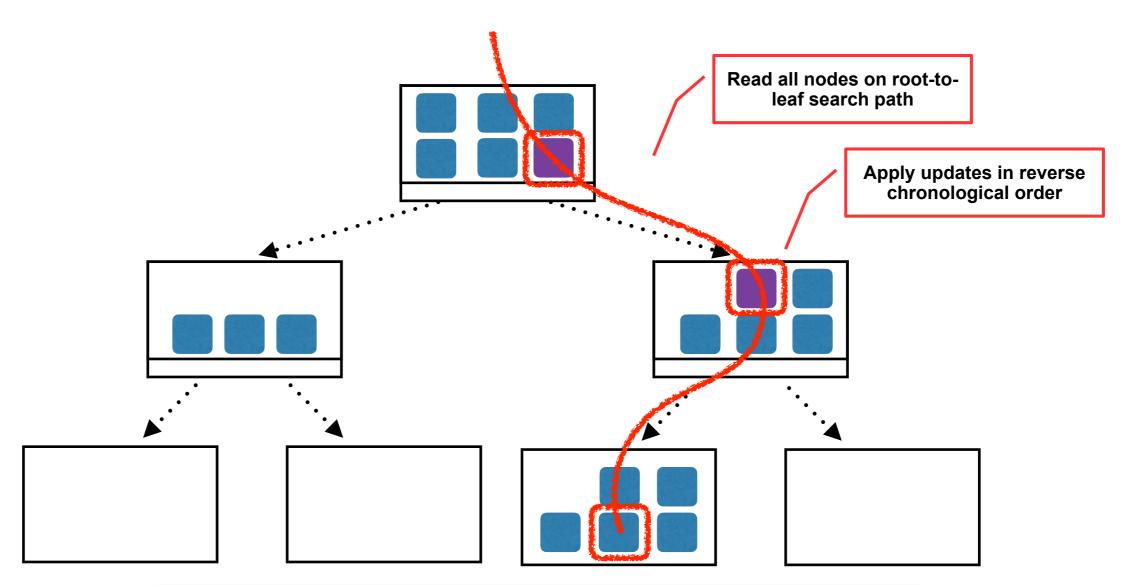








Searching with Upserts



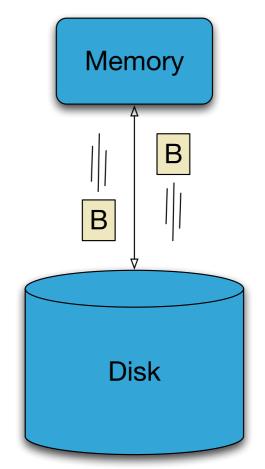
Upserts don't harm searches, but they let us perform **blind updates**.

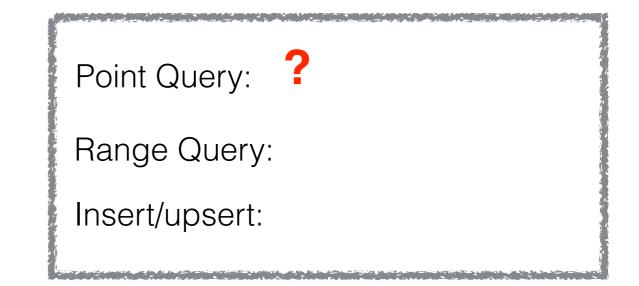
 What types of operations might naturally be encoded as upserts?

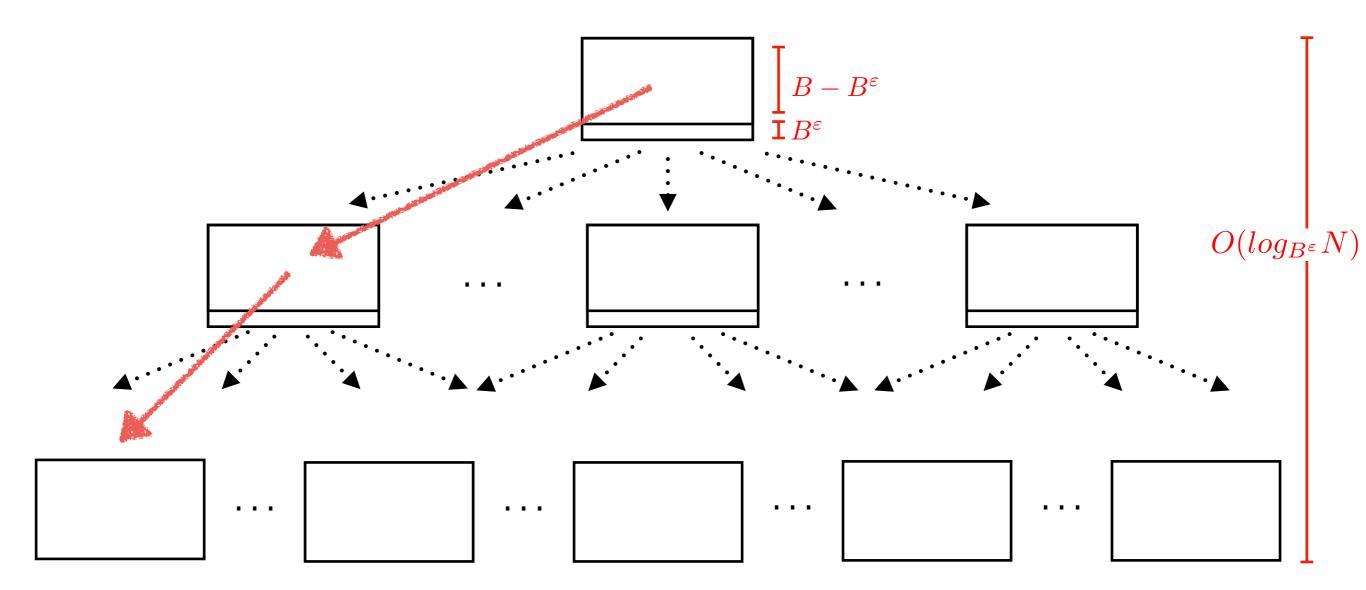
Performance Model

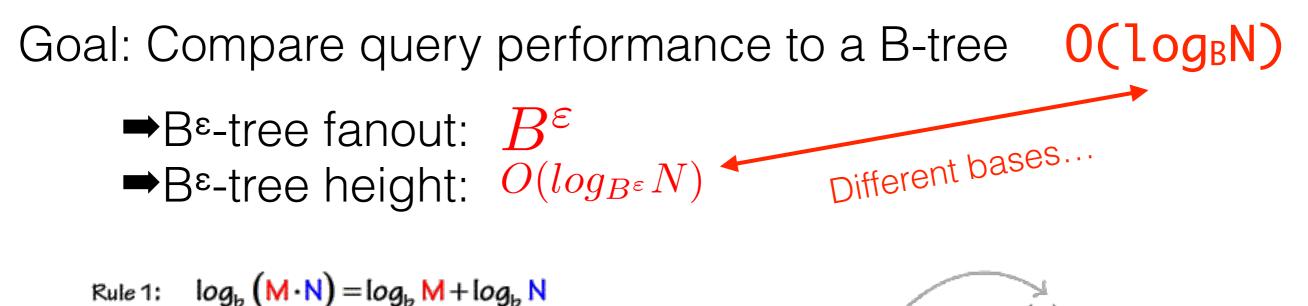
- Disk Access Machine (DAM) Model[Aggarwal & Vitter '88]
- Idea: expensive part of an algorithm's execution is transferring data to/from memory
- Parameters:
 - B: block size
 - M: memory size
 - N: data size

Performance = (# of I/Os)









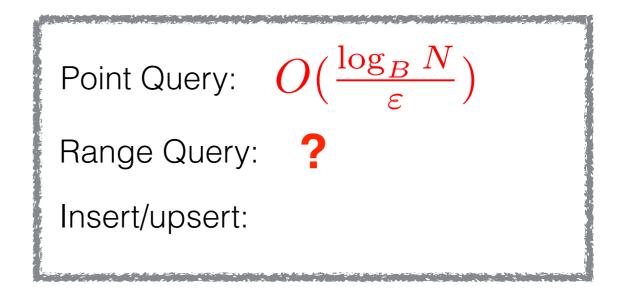
 $\log_{\mathbf{b}}(a) = \frac{\log_{x}(a)}{\log_{x}(a)}$

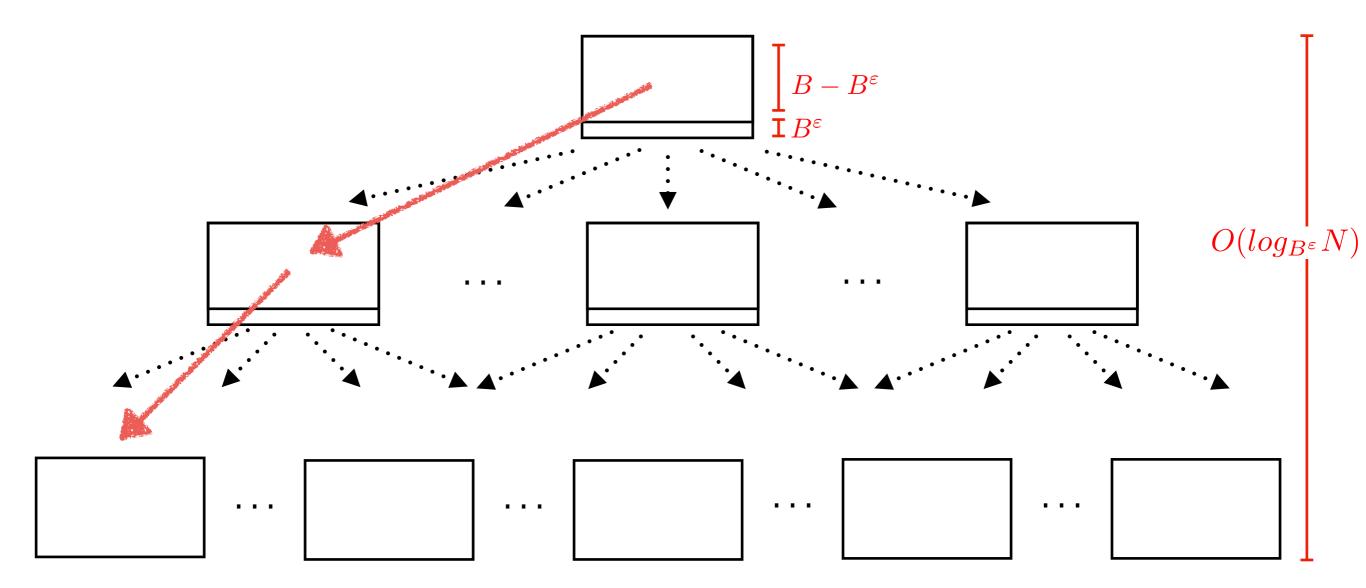
https://www.khanacademy.org

Rule 1: $\log_{b} (M \cdot N) = \log_{b} M + \log_{b}$ Rule 2: $\log_{b} \left(\frac{M}{N}\right) = \log_{b} M - \log_{b} N$ Rule 3: $\log_{b} \left(M^{k}\right) = k \cdot \log_{b} M$ Rule 4: $\log_{b} (1) = O$ Rule 5: $\log_{b} (b) = 1$ Rule 6: $\log_{b} (b^{k}) = k$ Rule 7: $b^{\log_{b}(k)} = k$

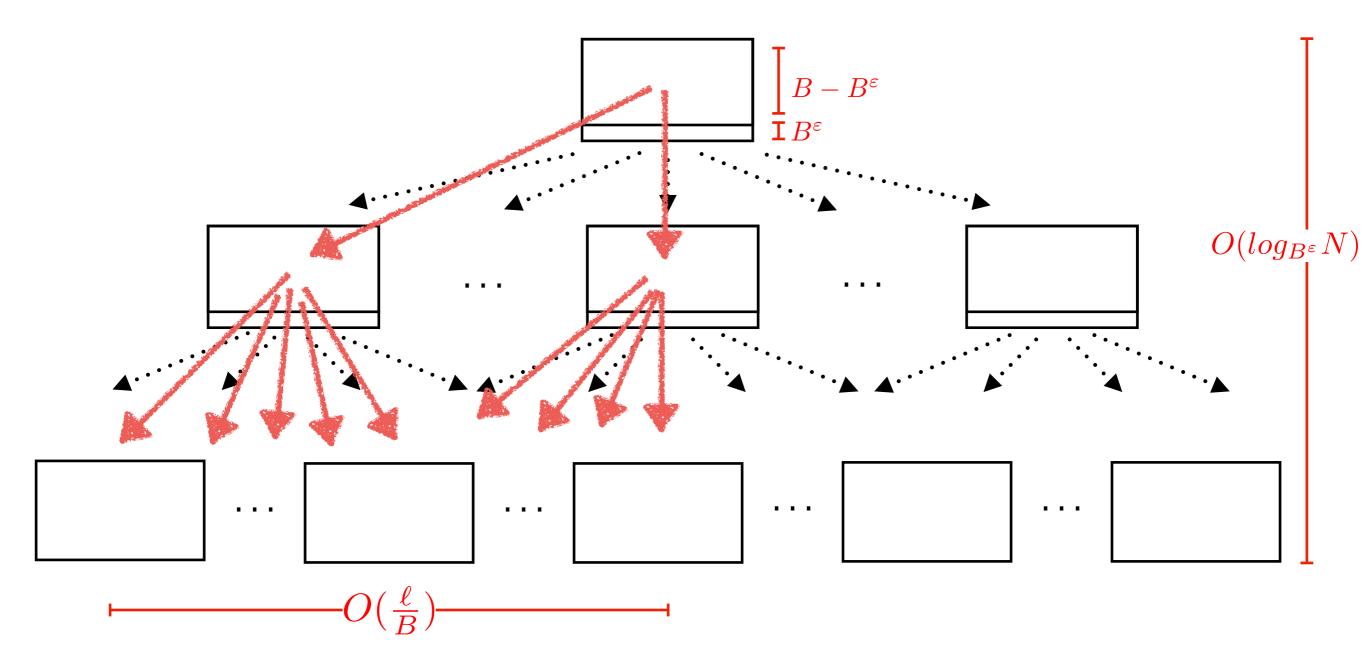
Where: b > 1, and M, N and k can be any real numbers

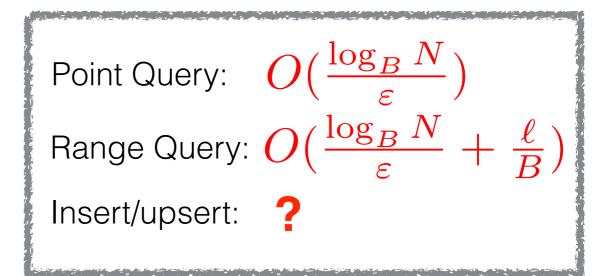
but M and N must be positive!

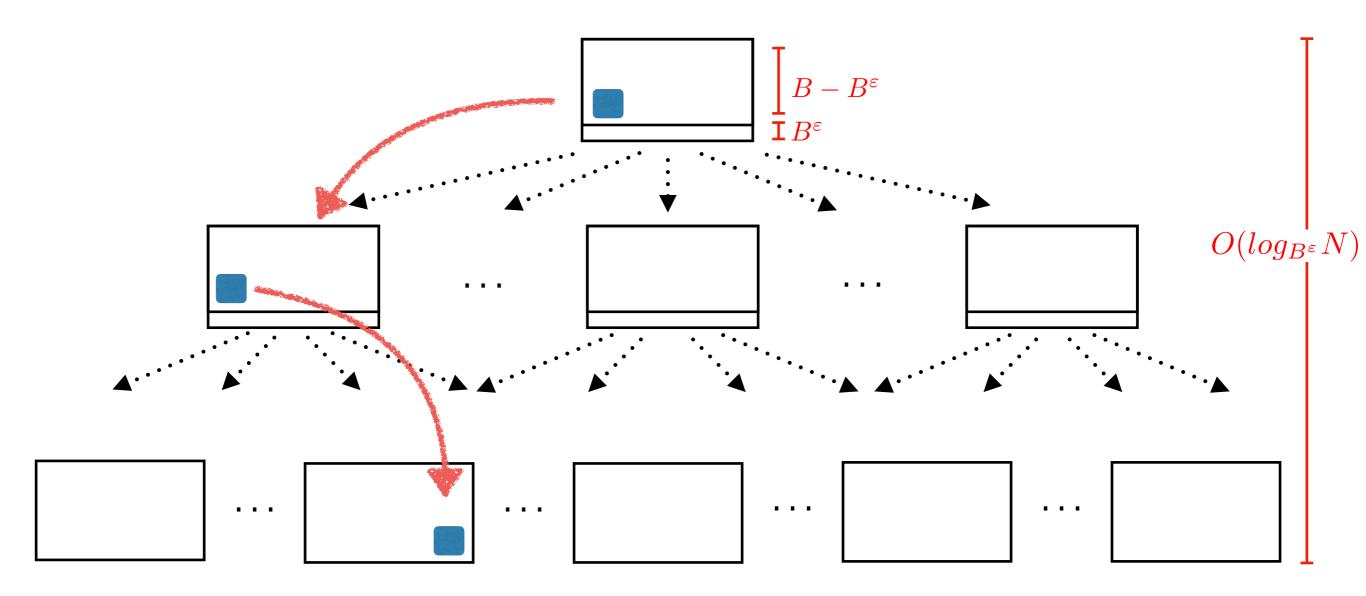






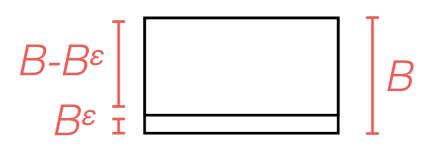






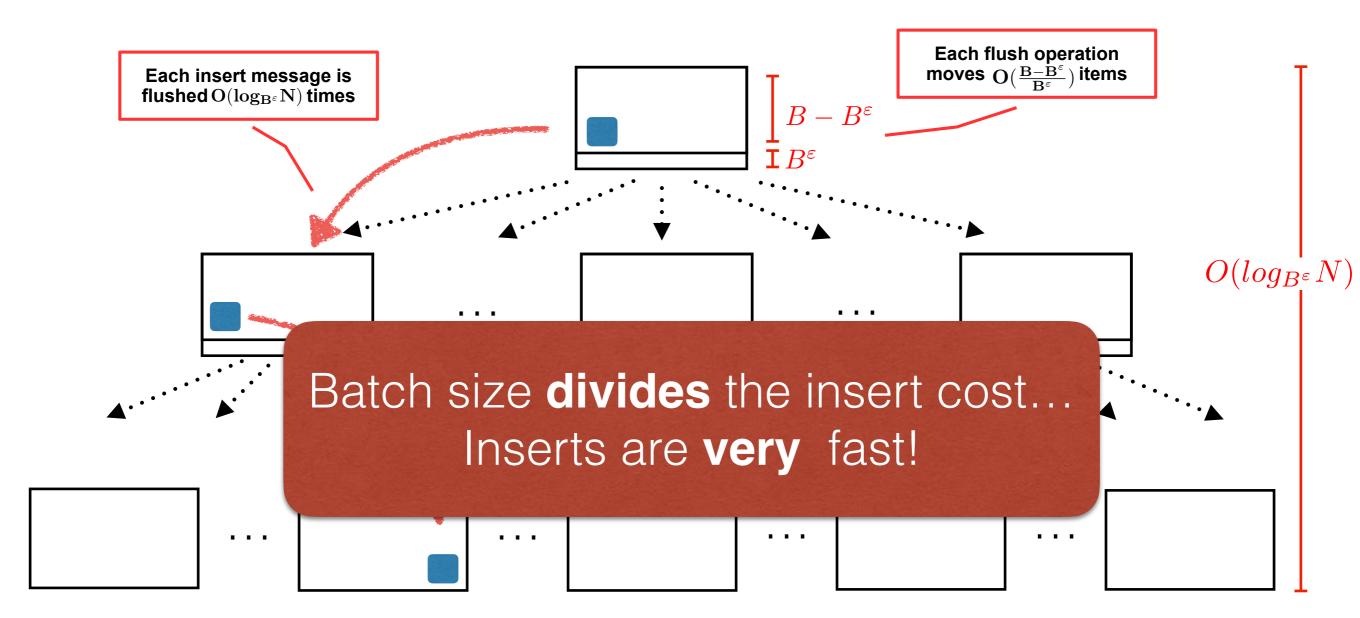
Goal: Attribute the cost of flushing across all messages that benefit from the work.

- → How many times is an insert flushed? $O(log_{B^{\varepsilon}}N)$
- → How many messages are moved per flush? $O(\frac{B-B^{\varepsilon}}{B^{\varepsilon}})$



- How do we "share the work" among the messages?
 - Divide by the total cost by the number of messages

Point Query: $O(\frac{\log_B N}{\epsilon})$ Range Query: $O(\frac{\log_B N}{\varepsilon} + \frac{\ell}{B})$ Insert/upsert: $O(\frac{\log N}{\epsilon R^{1-\epsilon}})$

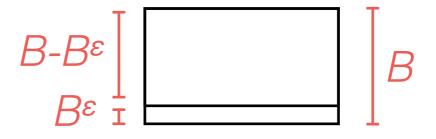


Recap/Big Picture

- Disk seeks are slow ➡ big I/Os improve performance
- B^ε-trees convert small updates to large I/Os
 - Inserts: orders-of-magnitude faster
 - Upserts: let us update data without reading
 - Point queries: as fast as standard tree indexes
 - Range queries: near-disk bandwidth (w/ large B)

Question: How do we choose **B** and ε?

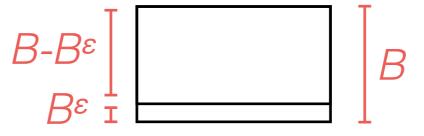
How do we choose ε?



 Original paper didn't actually use the term B^ε-tree (or spend very long on the idea). Showed there are various points on the trade-off curve between B-trees and Buffered Repository trees

 $\epsilon = 1$ corresponds to a B-tree $\epsilon = 0$ corresponds to a Buffered Repository tree

• How do we choose **B**?



- Let's first think about B-trees
 - What changes when B is large?
 - What changes when B is small?
- B^ε-trees buffer data; batch size *divides* the insert cost
 - What changes when B is large?
 - What changes when B is small?

In practice choose **B** and "fanout". **B** \approx 2-8MiB, fanout \approx 16

- How does a B ϵ -tree compare to an LSM-tree?
 - Compaction vs. flushing
 - Queries (range and point)
 - Upserts

- How would you implement
 - copy(old, new)
 - delete("large") :: kv-pair that occupies a whole leaf?
 - delete("a*lb*lc*") :: a contiguous range of kv-pairs?

Looking Ahead

• From B^ε-tree to file system!