
The VFS & A
Reference File System

CSCI 333 :: Storage Systems
Williams College

Video Outline

This video covers the general design and structure
of a reference file system
• What is the role of the file system?

• What types of information does it need to manage to do its

job?

• How does the file system organize data on a disk?

• How does the file system traverse this data when

performing representative file system operations?

Simplified Storage Stack

Block
Device

File System

Application user

OS

data = read(LBA),
write(data,LBA)

Hardwar

The File System’s Role

A file system implements the file abstraction over
an array of blocks. A file system must:
• translate application requests into block requests

• impose access controls on our data

• ensure consistency in the presence of failures

• perform well?

Basic Organization

A disk is divided into a logical array of blocks
• A file system takes ownership of some partition, and 

imposes structure using two types of information:

Data Metadata

A data file’s contents
A directory file’s listing

(Things the user knows about)

inodes & other data structures
Allocation information/status

(Management infrastructure)

A Reference File System

0 15

16

32

48

31

47

63

Consider this picture of a 64-block disk partition.
How might a file system manage these blocks?

First, let’s set aside a dedicated region for storing
file data.

A Reference File System

0 15

16

32

48

31

47

63
Data Region

Now, let’s see how file data ends up in the data region.

Storing File Data in Blocks
Suppose I have a large file, like OSTEP Ch40, stored in
some memory region.

ostep_ch40.pdf

Those blocks are stored somewhere in the data region

The file system will break the data into fixed size blocks
(if the last block is not filled, we just “pad” it with zeros)

A Reference File System

0 15

16

32

48

31

47

63
Data Region

Logically Organizing Data

Beyond storing blocks, an FS also needs to:
• Track which blocks in the data region are allocated and

which are free

• Associate allocated blocks with a specific file

• Associate regions within a file to particular blocks

• Ensure only authorized users can access data

FS Metadata structures are needed to
index our user data and impose order.

Tracking Allocations

There are many ways to track which blocks are in
use and which are free:
• Create a “bitmap” with one bit per block

‣0 = free, 1 = allocated
‣Efficient when we want to allocate/free blocks one at a time

• Use “extents” to track free blocks

‣ (start,end) pairs that describe a range on contiguous blocks
‣Efficient when we allocate large regions & have good locality

• Use a linked list of free blocks

‣Costs of (not) sorting?

• Use more advanced data structures, like trees

‣Can be combined with the techniques above (trees of extents?)

We’ll show the simplest approach: a
bitmap to manage our allocations

Data 
bitmap

A Reference File System

0 15

16

32

48

31

47

63
Data Region

0000 0000

0000 0000

1111 1100

0000 0000

0000 0000

…. ….

Note: to set a single bitmap bit, you need to:

1. read an entire block into memory

2. Update that bit in memory

3. Write back the entire block

The Inode

Inodes: persistent metadata about a single file
• Permissions & ownership

• Size (logical and physical)

• Locations of the file’s contents

• Link count,

• …

6 FILE SYSTEM IMPLEMENTATION

Size Name What is this inode field for?
2 mode can this file be read/written/executed?
2 uid who owns this file?
4 size how many bytes are in this file?
4 time what time was this file last accessed?
4 ctime what time was this file created?
4 mtime what time was this file last modified?
4 dtime what time was this inode deleted?
2 gid which group does this file belong to?
2 links count how many hard links are there to this file?
4 blocks how many blocks have been allocated to this file?
4 flags how should ext2 use this inode?
4 osd1 an OS-dependent field

60 block a set of disk pointers (15 total)
4 generation file version (used by NFS)
4 file acl a new permissions model beyond mode bits
4 dir acl called access control lists

Figure 40.1: Simplified Ext2 Inode

allocated to it, protection information (such as who owns the file, as well
as who can access it), some time information, including when the file was
created, modified, or last accessed, as well as information about where its
data blocks reside on disk (e.g., pointers of some kind). We refer to all
such information about a file as metadata; in fact, any information inside
the file system that isn’t pure user data is often referred to as such. An
example inode from ext2 [P09] is shown in Figure 40.11.

One of the most important decisions in the design of the inode is how
it refers to where data blocks are. One simple approach would be to
have one or more direct pointers (disk addresses) inside the inode; each
pointer refers to one disk block that belongs to the file. Such an approach
is limited: for example, if you want to have a file that is really big (e.g.,
bigger than the block size multiplied by the number of direct pointers in
the inode), you are out of luck.

The Multi-Level Index

To support bigger files, file system designers have had to introduce dif-
ferent structures within inodes. One common idea is to have a special
pointer known as an indirect pointer. Instead of pointing to a block that
contains user data, it points to a block that contains more pointers, each
of which point to user data. Thus, an inode may have some fixed number
of direct pointers (e.g., 12), and a single indirect pointer. If a file grows
large enough, an indirect block is allocated (from the data-block region of
the disk), and the inode’s slot for an indirect pointer is set to point to it.
Assuming 4-KB blocks and 4-byte disk addresses, that adds another 1024
pointers; the file can grow to be (12 + 1024) · 4K or 4144KB.

1Type info is kept in the directory entry, and thus is not found in the inode itself.

OPERATING

SYSTEMS

[VERSION 1.00] WWW.OSTEP.ORG

Managing Inodes

Where do we store our inodes?
• They aren’t data, so we don’t want to mix them in the data

region

• They are small, so they don’t take up a whole disk block

We’ll create an inode table
• If we know the inode size, the block size, and the start of

the inode table, we can use math to:

‣Find the disk block where an inode resides
‣Find the offset within the disk block

Data 
bitmap

A Reference File System

0 15

16

32

48

31

47

63
Data Region

Data 
bitmap

A Reference File System

0 15

16

32

48

31

47

63
Data Region

Inode 
table

Managing Metadata
Now we need some additional metadata to manage our metadata

• How do we know which inodes are allocated/free?

‣Another bitmap!

• How do we know where our structures are located? We need to know:

‣Bitmap locations
‣ Inode locations (inode table start)
‣Number of inodes
‣Data region start
‣Number of data blocks

The superblock stores information about the whole file system
• Information we need to “bootstrap” our file system (data listed above)

• Often contains other miscellaneous parameters, if tunable

‣Block size (a multiple of sector size)
‣Encryption keys
‣Compression formats
‣…

Since the superblock is so important, it is often treated specially
• Stored at a known location (first block of partition?)

• Often replicated elsewhere for safety

SU
PE

R
i-m

ap Data 
bitmap

A Reference File System

0 15

16

32

48

31

47

63
Data Region

Inode 
table

Creating a Hierarchy

What about directories?
Beyond file data, we also need infrastructure to:
• Traverse through our namespace to find a target file

‣We start traversing at /
‣We must confirm that we have sufficient rights to access each

component along the path
‣ To access /foo/bar/file.txt, we need permissions to access:

 /, foo, bar, and file.txt

• Add, remove, or delete children from our directories

Where is our directory structure kept?

Directories: Data or Metadata?

Users can:
• Create a directory (mkdir)

• Query directory continents (readdir)

Users cannot:
• Directly modify a directory

‣Directory contents are modified indirectly by creating/deleting children

What do directories need?
• Permissions

‣To enforce access and “traversal” through namespace

• Size, link counts, access times, …

‣The need everything we store in an inode!

We’ll create explicit directory files with
their own inodes and data blocks.

Directories: Data or Metadata?

Example Directory Format
• Inode points to a directory’s data blocks

• Data blocks store a “table” of name, inode records

‣How to format the table?
‣ Are all names the same length?
‣ No

‣ Are all inode numbers the same length?
‣ Yes

inum strlen Name

7 2 .

5 3 ..

55 4 foo

56 30 variable_lengths_are_hard.txt

Putting It All Together
Let’s walk through sample operations, and see

how those operations translate into accesses to
our reference file system’s data structures

Access Patterns:
Creating a file, then writing 3 blocksFILE SYSTEM IMPLEMENTATION 13

data inode root foo bar root foo bar bar bar
bitmap bitmap inode inode inode data data data[0] data[1] data[2]

read
read

read
read

create read
(/foo/bar) write

write
read
write

write
read

read
write() write

write
write
read

read
write() write

write
write
read

read
write() write

write
write

Figure 40.4: File Creation Timeline (Time Increasing Downward)

the directory containing the new file. The total amount of I/O traffic to
do so is quite high: one read to the inode bitmap (to find a free inode),
one write to the inode bitmap (to mark it allocated), one write to the new
inode itself (to initialize it), one to the data of the directory (to link the
high-level name of the file to its inode number), and one read and write
to the directory inode to update it. If the directory needs to grow to ac-
commodate the new entry, additional I/Os (i.e., to the data bitmap, and
the new directory block) will be needed too. All that just to create a file!

Let’s look at a specific example, where the file /foo/bar is created,
and three blocks are written to it. Figure 40.4 shows what happens during
the open() (which creates the file) and during each of three 4KB writes.

In the figure, reads and writes to the disk are grouped under which
system call caused them to occur, and the rough ordering they might take
place in goes from top to bottom of the figure. You can see how much
work it is to create the file: 10 I/Os in this case, to walk the pathname
and then finally create the file. You can also see that each allocating write
costs 5 I/Os: a pair to read and update the inode, another pair to read
and update the data bitmap, and then finally the write of the data itself.
How can a file system accomplish any of this with reasonable efficiency?

c© 2008–18, ARPACI-DUSSEAU

THREE

EASY

PIECES

Access Patterns:
Creating a File, then writing three blocksFILE SYSTEM IMPLEMENTATION 13

data inode root foo bar root foo bar bar bar
bitmap bitmap inode inode inode data data data[0] data[1] data[2]

read
read

read
read

create read
(/foo/bar) write

write
read
write

write
read

read
write() write

write
write
read

read
write() write

write
write
read

read
write() write

write
write

Figure 40.4: File Creation Timeline (Time Increasing Downward)

the directory containing the new file. The total amount of I/O traffic to
do so is quite high: one read to the inode bitmap (to find a free inode),
one write to the inode bitmap (to mark it allocated), one write to the new
inode itself (to initialize it), one to the data of the directory (to link the
high-level name of the file to its inode number), and one read and write
to the directory inode to update it. If the directory needs to grow to ac-
commodate the new entry, additional I/Os (i.e., to the data bitmap, and
the new directory block) will be needed too. All that just to create a file!

Let’s look at a specific example, where the file /foo/bar is created,
and three blocks are written to it. Figure 40.4 shows what happens during
the open() (which creates the file) and during each of three 4KB writes.

In the figure, reads and writes to the disk are grouped under which
system call caused them to occur, and the rough ordering they might take
place in goes from top to bottom of the figure. You can see how much
work it is to create the file: 10 I/Os in this case, to walk the pathname
and then finally create the file. You can also see that each allocating write
costs 5 I/Os: a pair to read and update the inode, another pair to read
and update the data bitmap, and then finally the write of the data itself.
How can a file system accomplish any of this with reasonable efficiency?

c© 2008–18, ARPACI-DUSSEAU

THREE

EASY

PIECES

1. Read / inode to find location of directory data

2. Read / data to find inode number for child foo

3. Read foo inode to find location of directory data

4. Read foo data to confirm that bar does not exist

5. Read inode bitmap to find a free inode bit

6. Write inode bitmap to mark inode as allocated

7. Write foo data to include new child bar

8. Read bar inode block (bar’s inode is small part)

9. Update bar’s inode and write back modified block

10.Update foo’s inode (modification time, size, links)
1. Read block containing bar’s inode. Is there existing data?

2. Allocate a new bit for data block (read containing block, 

modify single bit, write back whole block)

3. Write data to newly allocated data block

4. Update bar’s inode, and write back the containing block

(Repeat steps above)

(Repeat steps above)

Access Patterns:
open(“/foo/bar”), read three blocksFILE SYSTEM IMPLEMENTATION 11

data inode root foo bar root foo bar bar bar
bitmap bitmap inode inode inode data data data[0] data[1] data[2]

read
read

open(bar) read
read

read
read

read() read
write
read

read() read
write
read

read() read
write

Figure 40.3: File Read Timeline (Time Increasing Downward)

the file system must be able to find the inode, but all it has right now is
the full pathname. The file system must traverse the pathname and thus
locate the desired inode.

All traversals begin at the root of the file system, in the root directory
which is simply called /. Thus, the first thing the FS will read from disk
is the inode of the root directory. But where is this inode? To find an
inode, we must know its i-number. Usually, we find the i-number of a file
or directory in its parent directory; the root has no parent (by definition).
Thus, the root inode number must be “well known”; the FS must know
what it is when the file system is mounted. In most UNIX file systems,
the root inode number is 2. Thus, to begin the process, the FS reads in the
block that contains inode number 2 (the first inode block).

Once the inode is read in, the FS can look inside of it to find pointers to
data blocks, which contain the contents of the root directory. The FS will
thus use these on-disk pointers to read through the directory, in this case
looking for an entry for foo. By reading in one or more directory data
blocks, it will find the entry for foo; once found, the FS will also have
found the inode number of foo (say it is 44) which it will need next.

The next step is to recursively traverse the pathname until the desired
inode is found. In this example, the FS reads the block containing the
inode of foo and then its directory data, finally finding the inode number
of bar. The final step of open() is to read bar’s inode into memory; the
FS then does a final permissions check, allocates a file descriptor for this
process in the per-process open-file table, and returns it to the user.

Once open, the program can then issue a read() system call to read
from the file. The first read (at offset 0 unless lseek() has been called)
will thus read in the first block of the file, consulting the inode to find
the location of such a block; it may also update the inode with a new last-
accessed time. The read will further update the in-memory open file table
for this file descriptor, updating the file offset such that the next read will
read the second file block, etc.

c© 2008–18, ARPACI-DUSSEAU

THREE

EASY

PIECES

Access Patterns:
open(“/foo/bar”), read()FILE SYSTEM IMPLEMENTATION 11

data inode root foo bar root foo bar bar bar
bitmap bitmap inode inode inode data data data[0] data[1] data[2]

read
read

open(bar) read
read

read
read

read() read
write
read

read() read
write
read

read() read
write

Figure 40.3: File Read Timeline (Time Increasing Downward)

the file system must be able to find the inode, but all it has right now is
the full pathname. The file system must traverse the pathname and thus
locate the desired inode.

All traversals begin at the root of the file system, in the root directory
which is simply called /. Thus, the first thing the FS will read from disk
is the inode of the root directory. But where is this inode? To find an
inode, we must know its i-number. Usually, we find the i-number of a file
or directory in its parent directory; the root has no parent (by definition).
Thus, the root inode number must be “well known”; the FS must know
what it is when the file system is mounted. In most UNIX file systems,
the root inode number is 2. Thus, to begin the process, the FS reads in the
block that contains inode number 2 (the first inode block).

Once the inode is read in, the FS can look inside of it to find pointers to
data blocks, which contain the contents of the root directory. The FS will
thus use these on-disk pointers to read through the directory, in this case
looking for an entry for foo. By reading in one or more directory data
blocks, it will find the entry for foo; once found, the FS will also have
found the inode number of foo (say it is 44) which it will need next.

The next step is to recursively traverse the pathname until the desired
inode is found. In this example, the FS reads the block containing the
inode of foo and then its directory data, finally finding the inode number
of bar. The final step of open() is to read bar’s inode into memory; the
FS then does a final permissions check, allocates a file descriptor for this
process in the per-process open-file table, and returns it to the user.

Once open, the program can then issue a read() system call to read
from the file. The first read (at offset 0 unless lseek() has been called)
will thus read in the first block of the file, consulting the inode to find
the location of such a block; it may also update the inode with a new last-
accessed time. The read will further update the in-memory open file table
for this file descriptor, updating the file offset such that the next read will
read the second file block, etc.

c© 2008–18, ARPACI-DUSSEAU

THREE

EASY

PIECES

1. Read / inode to find location of directory data

2. Read / data to find inode number for child foo

3. Read foo inode to find location of directory data

4. Read foo data to find bar inode number

5. Read bar inode to check permissions & open

6. Read bar inode to identify location of first block

7. Read bar’s first data block

8. Update bar’s inode with access time

 (Repeat 6-8 for each read)

Summary

File Systems impose order on our disks.
In our reference FS:
• A user’s file data is divided into fixed-size blocks

‣Directory files have data too!
‣ Well-defined format that internal FS functions read/write to satisfy user requests

• File system metadata indexes that user data

‣ Inodes keep track of which blocks correspond to which file and how
‣Bitmaps are one way to track allocation status
‣The superblock summarizes all of the metadata, needed to “bootstrap”

the file system

We’ve so far described a “working” file system
design. In future units, we’ll think about how to

design efficient file systems.

