The VFS & A
Reference File System

CSCI 333 :: Storage Systems
Williams College



This video covers the general design and structure
of a reference file system
» What is the role of the file system?

» What types of information does it need to manage to do its
job?

« How does the file system organize data on a disk?

- How does the file system traverse this data when
performing representative file system operations?



—_———

f data = read(LBA), hccass

B | OC k Hardwar




A file system implements the file abstraction over
an array of blocks. A file system must:

» translate application requests into block requests
* Impose access controls on our data
* ensure consistency in the presence of failures

© BEHeHTReH



_Basic Organization

A disk is divided into a logical array of blocks

* A file system takes ownership of some partition, and
Imposes structure using two types of information:

Data Metadata

(Things the user knows about) (Management infrastructure)

A data file’'s contents iInodes & other data structures |
A directory file’s listing '+ Allocation information/status

________________________________________________________________



__A Refterence File Sy

e —_—— e —— -

Consider this picture of a 64-block disk partition.

How might a file system manage these blocks?

0

16
32

48

1 ] ] ]

T e e ey e
] ] ] [
] ] L] 1

15

31
47

63

First, let’s set aside a dedicated region for storing
file data.



16
32

48

__A Reference File Sy

——— e ————— .

L ] [ [
HEEE RN
L] L] L] L]
[ [ [ [
Data Region

15

31
47

63

Now, let’s see how file data ends up in the data region.



Sto r| ing F nBIocks o

Suppose | have a Iarge file, like OSTEP Ch40, stored in
some memory region.

ostep_ch40.pdf

The file system WiII break the data into fixed size blocks
(if the last block is not filled, we just “pad” it W|th zeros)

Those blocks are stored somewhere in the data region



HEEREYEEEERE

A EEEREEEE |31
2L i it dfreigdrar

A8 LI L i it dl 63




ng Data

Beyond storing blocks, an FS also needs to:

 Track which blocks in the data region are allocated and
which are free

 Associate allocated blocks with a specific file
» Associate regions within a file to particular blocks
* Ensure only authorized users can access data

FS Metadata structures are needed to

INndex our user data and impose ordetr.

e -



There are many ways to track which blocks are in
use and which are free:
 Create a “bitmap” with one bit per block

» O = free, 1 = allocated
» Efficient when we want to allocate/free blocks one at a time

« Use “extents” to track free blocks
» (start,end) pairs that describe a range on contiguous blocks
» Efficient when we allocate large regions & have good locality

« Use a linked list of free blocks
» Costs of (not) sorting?

« Use more advanced data structures, like trees
» Can be combined with the techniques above (trees of extents?)

We’ll show the simplest approach: a

bitmap to manage our allocations




A Reference File System

Note: to set a smgle bitmap bit, you need to:

0000 0000 1. read an entire block into memory
0000 0000 L
1111 1100 2. Update that bit in memory

3. Write back the entire block

] | [ L1115

1 B BT 31
| | [ 1147

| | [ 1163

Data Region




Inodes: persistent metadata about a single file

* Permissiqns & ownership

2
N
®
o
Q
0
&
S
Q
-
-y
<
28
0
D

» Locations 's contents
o |_| N k CO Name What is this inode field for?
mode can this file be read /written/executed?
o uid who owns this file?
size how many bytes are in this file?
time what time was this file last accessed?
ctime what time was this file created?
mtime what time was this file last modified?
dtime what time was this inode deleted?
gid which group does this file belong to?

24 links_count  how many hard links are there to this file?
4 Vblocks how many blocks have been allocated to this file?
4  flags how should ext2 use this inode?
4 osdl an OS-dependent field
60  block a set of disk pointers (15 total)
4 generation file version (used by NEFS)
4 file_acl a new permissions model beyond mode bits
4 dir_acl called access control lists

Figure 40.1: Simplified Ext2 Inode



Where do we store our inodes?
- They aren’t data, so we don’t want to mix them in the data
region
» They are small, so they don’t take up a whole disk block

We’ll create an inode table

* |If we know the inode size, the block size, and the start of

the inode table, we can use math to:
» Find the disk block where an inode resides
» Find the offset within the disk block



A Reference File Sy

16
32

48

Data

bitmap

EEENE RN [ [
L DT EEEE EE
[ [ [ [
[ [ [ [
Data Region

15

31
47

63



16
32

48

Data Region

31
47

63



Now we need some additional metadata to manage our metadata

« How do we know which inodes are allocated/free?
» Another bitmap!

 How do we know where our structures are located? We need to know:
» Bitmap locations
» Inode locations (inode table start)
» Number of inodes
» Data region start
» Number of data blocks

The superblock stores information about the whole file system
* Information we need to “bootstrap” our file system (data listed above)

« Often contains other miscellaneous parameters, if tunable
» Block size (@ multiple of sector size)
» Encryption keys
» Compression formats
b ...

Since the superblock is so important, it is often treated specially
« Stored at a known location (first block of partition?)
 Often replicated elsewhere for safety



__A Reference File S

| [ 1147

| [ 1163

Data




What about directories?

Beyond file data, we also need infrastructure to:

» Traverse through our namespace to find a target file
» We start traversing at /

» We must confirm that we have sufficient rights to access each
component along the path

» Toaccess /foo/bar/file.txt, we need permissions to access:
/, foo, bar,and file. txt

* Add, remove, or delete children from our directories

Where is our directory structure kept?




_Directories ata’?

- ———— == -

Users can:
 Create a directory (mkdir)
 Query directory continents (readdir)

Users cannot:

» Directly modify a directory
» Directory contents are modified indirectly by creating/deleting children

What do directories need?

* Permissions
» To enforce access and “traversal” through namespace

- Size, link counts, access times, ...
» The need everything we store in an inode!

We'll create explicit directory files with

their own Inodes and data blocks.




_Directories: Data or Metadata?

Example Directory Format
* Inode points to a directory’s data blocks

« Data blocks store a “table” of name, inode records

» How to format the table?
» Are all names the same length?
» No

» Are all inode numbers the same length?
» Yes

inum strlen
7/ 2 .
5 3 .
55 4 foo

56 30 variable lengths are hard.txt




Putting It All Together

Let’s walk through sample operations, and see
how those operations translate into accesses to
our reference file system’s data structures



Access Patterns:

Creating a file, then writing 3 blocks
data inode | root foo bar |root foo bar bar bar
bitmap bitmap |inode inode inode|data data data[0] data[l] data[2]
create

(/foo/bar)

write()

write()

write()

Figure 40.4: File Creation Timeline (Time Increasing Downward)



data

bitmap bitmap

inode

Access Patterns:
Creating a File, then writing three blocks

root foo bar
inode inode inode

root foo bar bar bar
data data data[0] data[l] data[2]

read 1. Read / inode to find location of directory data
read 2. Read / data to find inode number for child foo
read 3. Read foo inode to find location of directory data
read 4. Read foo data to confirm that bar does not exist
create read 5. Read inode bitmap to find a free inode bit
(/foo/bar) write 6. Write inode bitmap to mark inode as allocated
write 7. Write foo data to include new child bar
read 8. Read bar inode block (bar’s inode is small part)
write 9. Update bar’s inode and write back modified block
write 10.Update foo’s inode (modification time, size, links)
read 1. Read block containing bar’s inode. Is there existing data?
read 2. Allocate a new bit for data block (read containing block,
write() write modify single bit, write back whole block)
write 3. Write data to newly allocated data block
write 4. Update bar’s inode, and write back the containing block
read
read
write() write write (Repeat steps above)
write
read
read
write() write
write (Repeat steps above)
write

Figure 40.4: File Creation Timeline (Time Increasing Downward)



Access Patterns:
open(“/too/bar”), read three blocks

data inode | root foo bar |root foo  bar bar bar
bitmap bitmap |inode inode inode |data data data[0] data[l] data[2]

open(bar)

read()

read()

read()




data inode
bitmap bitmap

root

inode inode inode

Access Patterns;:
open(“/foo/bar”), read()

foo

bar

root

foo

bar

bar bar

data data data[0] data[l] data[2]

read

Read / inode to find location of directory data
Read / data to find inode number for child foo
Read foo inode to find location of directory data
Read foo data to find bar inode number

Read bar inode to check permissions & open

Read bar inode to identify location of first block
Read bar’s first data block
Update bar’s inode with access time

(Repeat 6-8 for each read)

1.
read o
open(bar) read . 3.
rea 4.
read 5.
read 6.
read() read 7.
write 8.
read
read() read
write
read
read() read

write




File Systems impose order on our disks.

In our reference FS:

« A user’s file data is divided into fixed-size blocks

» Directory files have data too!
» Well-defined format that internal FS functions read/write to satisfy user requests

* File system metadata indexes that user data
» Inodes keep track of which blocks correspond to which file and how
» Bitmaps are one way to track allocation status

» The superblock summarizes all of the metadata, needed to “bootstrap”
the file system

We’ve so far described a “working” file system

design. In future units, we’ll think about how to
design efficient file systems.




