
The Log Structured File System (LFS)
Williams College 

CSCI 333



This Video

• Log Structured File System (LFS) 

• Motivation 

• Design Trade-offs 

• Implementation Details



Trends That Motivated LFS

• RAM sizes were growing 

• Random I/O was slower than sequential I/O, and the 
gap seemed destined to widen

With more RAM, we can satisfy many of our reads 
from cache: optimizing writes is important.



High Level Idea

Treat the disk like an append-only circular log. 

• All updates are written out-of-place 

• Garbage collect stale data to reclaim space



High Level Idea

0 MAXLBA

File 1Write
File 2Write
File 3Write
File 4Write

Over-write
Over-write



Observations

• Seeking to update data is expensive, but if we 
always append, we never need to seek to write new 
data! 

• When we “overwrite” data, we write new version 
“out-of-place”, logically deleting previous version 
• New versions may be far from logical neighbors



High Level Idea

0 MAXLBA

File 1Write
File 2Write
File 3Write
File 4Write

Over-write
Over-write

File 3Seq Read



High Level Idea

0 MAXLBA

File 1Write
File 2Write
File 3Write
File 4Write

Over-write
Over-write

File 3Seq Read



Design Tradeoffs

Logging (e.g., LFS) 

• Sequential Writes 

• Random Writes 

• Sequential Reads



LFS Challenges

The high level idea is relatively clear, but the details are 
where things become tricky: 

• Sequential writes are good, but how do we avoid the 
performance penalty of writing small blocks? 

• How do we reclaim data that is overwritten/deleted? 

• How do we keep track of our metadata? 
• Do we write inodes out of place too? 
• How do we track the latest version of an inode? 
• How do we initialize our file system when we mount?



Avoiding Small I/Os Using Segments



Segments: Buffering Updates

• Writing to consecutive LBAs does not guarantee we avoid I/O setup 
costs 

• Example: write to LBAx, …wait…, then write to LBAx+1 

• While waiting, the disk rotates. May cost a full rotation to write LBAx+1! 

• Instead, keep all updates in memory until you’ve accumulated a sizable 
batch, then “stream” them 

• The LFS batch size is the segment 

• The optimal segment size is a function of the disk itself: we want to 
achieve a good fraction of the peak bandwidth by amortizing the 
setup cost



Managing Structures: Inodes and the 
Imap



Inodes & Out-of-Place Updates

• If we overwrite those blocks, we don’t immediately 
delete them. We write our new copies, and then 
write a new inode that refers to them.

0 MAXLBA

1 2 3 I 2’ I’

• Workload: Write three new blocks to a file
• How do we know how to find them?

• An inode. Since we just wrote new data, we 
need to write our new inode as well.



Imap: Inode Index

• Imap: a structure that contains the address of the 
most recent version of each on-disk inode. 

• Every file update creates a new version of an inode 

• We update the in-memory Imap to refer to this 
new version 

• We write the portion of the inode map that 
contains this entry so the Imap is persistent



Keeping Track of Metadata With 
Checkpoints



Checkpoints: Keeping LFS Consistent

Checkpoint region is the one part of the system that 
is written “in-place” 

• Describes where the inode map lives 
• Stores location of log start/end 

Checkpoint writes alternate between 2 locations 

• If LFS crashes during a checkpoint, it can safely 
start from the other checkpoint



Steps to Mounting an LFS instance

• Read both checkpoint regions; select most recent 
valid checkpoint 

• Use checkpoint information to construct the imap 

• Replay consistent segments from the log (starting 
after the tail of the checkpoint’s log) to roll forward



Reclaiming Space with Garbage 
Collection



Reclaiming Garbage

• During our first pass through the disk, we can write sequentially 

• But each time we overwrite a block, we create a “hole” in our 
log where the now “stale” version lives 

• When we get to the end of our disk and circle back, our free 
space is fragmented: many small holes 

• We could “stitch” our log through the holes, but holes might 
not be large enough to fit a segment 

• If we can’t create large segments of free space, we would 
need to seek on our writes!



Segments & Garbage

• Idea: divide our log into segments, and garbage collect 
segments 

• Segment Summary Info: each segment stores metadata that 
notes the inode number that corresponds to each of its blocks 

• To determine if a block is stale, read its inode and see if the 
inode points to this block (live) or to another block (stale) 

• To garbage collect a segment, migrate all live blocks to a 
new segment, update their inodes to point to that new copy, 
and then reclaim the old segment 

• This creates a large contiguous region of free space!



LFS Legacy



LFS ideas are everywhere

• SSD internals mirror segment design & restrictions 

• SMR HDDs & Zoned Namespace SSDs have an API 
that exactly mirrors the LFS design 

• F2FS is a modern log-structured file system backed 
by Samsung for phones & SSDs



Not Suitable For Everyone

• Garbage collection 

• Great if it can be done in the background, but not 
always possible 

• Aging: file system performance degradation over 
time 

• Sequential read after random write 

• Defragmentation?


