
Hard Disk Drives
CS333

Williams College

Prior Knowledge
• Memory Hierarchy

• Often orders of magnitude difference between levels
• Speed/Capacity/$

• Variety of transfer sizes

• I/O Devices
• Software Interface (Device Drivers)
• Firmware (Program logic running on the devices themselves)

This Class
• HDD “guarantees”

• Performance & correctness

• Physical components and Geometry
• Breaking down an I/O

• The role of caching

• Scheduling requests
• Who schedules requests?
• How is schedule determined?

Hard Disk Drives (HDDs)

Despite the existence of newer,
faster devices, HDDs have many
benefits and use cases:

• High capacity, low cost ($/GiB)

• Predictable performance
• “Unwritten contract”: Tracks (LBAs) near each other

are more efficient to access than tracks (LBAs) that
are far away

HDDs

Disk Head
(seeks in/out)

Platters
(rotate)

HDDs

Disk Head
(seeks in/out)

Platters
(rotate)

Tracks
(concentric circles)

HDDs

Disk Head
(seeks in/out)

Platters
(rotate)

Tracks
(concentric circles)

Sector
(unit of transfer)

Visualizing HDDs: “Unwind” The Tracks

Seeking through the Linear Address
Space

HDDs

HDDs

• Disks are addressed by LBA: [0-MAXLBA)

• Transfer data in fixed-size units: “disk block” (~sector)

• “block interface” used for both reads and writes

0 MAXLBA

Breaking Down an I/O

0 MAXLBA

• Two costs to every operation:

• Setup: Moving the disk head, rotating the platters
• Everything that you need to do to position the disk’s read/write head

directly above the first byte of your target sector

• Transfer: Reading/writing data while the disk rotates

Ex: data <- read(10024, 10048)

seek + rotational delay
transfer

Performance Observations

• Setup (placing the disk head) is expensive O(10 ms)

• seeking to target track

• Up to a full rotational delay to locate sector

• Once the disk head is in place, data transfer is
quite fast O(100 MiB/s)

2
13

2
16

2
19

2
22

2
25

2
28

2
�2

2
0

2
2

2
4

2
6

Read size (bytes)

E
ff

e
c
ti

v
e

B
a
n

d
w

id
th

(
M

B
/s

e
c
)

HDD

To maximize performance, minimize seeks and
maximize the ratio of time spent transferring.

Why Does This
Matter?

HDD

File System

Application user space

OS kernel

Simplified Storage Stack

data = read(LBA),
write(data,LBA)

Our file systems transform application requests
into block requests… how well are they doing?

Good Cases

Sequential I/O
• Write a large file to an empty

file system.

• Read an existing file in order

0

40

80

120

*higher is better

M
B/

s ext4
raw disk

Sequential I/O

Good Cases

• Write a large file to an
empty file system

y-axis = offset, so a “straight line”
means consecutive block addresses.

Good Cases

• Read an existing file in
order

y-axis = offset, so a “straight line”
means consecutive block addresses.

Bad Cases

Random I/O
• Randomly update an existing

file

• Randomly reading an existing
file

• Reading data from many
independent files

0

40

80

120

*higher is better

M
B/

s ext4
raw disk

Random Overwrites

Bad Cases

• Randomly update an
existing file

Note: these requests are 4-byte updates, so the old data
is first read, then the block is modified in memory, and
later the whole block is written back to disk.
We see that the file system benefits from caching.

(blue = reads; green = writes)

Takeaway:
Locality Matters

Disk Geometry

• High level idea gets us most of the way, but disk geometry
adds complications (opportunities?)

• Multi-zoned disks

• The inside/outside of the disk might have different
densities (and therefore speeds)

• Track Skew

• Locate LBAs on consecutive tracks so that seeking
from last LBA on one track to first on next does not
incur rotational delay

Takeaway:
Sometimes it pays to “open the black
box”. Abstractions are important, but
they sometimes hide useful details.

Scheduling

• High Level Question: given a set of requests that must be
completed (LBAs), what order should we schedule the requests?

• Who does the scheduling?

• Obstacles?

• Can we predict the future?

• Crashes: what if requests are
dependent on others & written
out of order?
• Applications: fsync
• OS: “barriers”

HDD

File System

Application

Disk Scheduling

• Greedy: Shortest job first

• Shortest-seek-time-first (SSTF)

• Nearest-block-first (NBF)

• Problems?

• Starvation: one (or more) requests never receive
access to the resources they need to complete

Disk Scheduling

• Elevator (SCAN)

• Sweep back and forth
along the disk tracks,
writing blocks as you go

• (Several variants of this general idea)

max_lba

min_lba

Bill Jannen

Bill Jannen

Bill Jannen
(1)
Sweep
up

Bill Jannen
(2)
Sweep
down

Hard Disk Drive Recap

• HDD mechanical behaviors suggest a rough performance
model: treq = tsetup + ttransfer
• tsetup = seek + rotational delay
• ttransfer = reading bytes from the platter as it rotates

• The “unwritten contract”: nearby LBAs can be more
efficiently accessed than distant LBAs
• Small and random I/O patterns are expensive
• Locality matters

• Goal: Given what we know about HDDs, we should design
software that takes advantage of the HDD best cases and
minimizes HDD worst cases.

