
FUSE File System in User Space
https://www.kernel.org/doc/Documentation/filesystems/fuse.txt

CS333
Williams College

https://www.kernel.org/doc/Documentation/filesystems/fuse.txt

FUSE Overview

• The FUSE framework lets application writers create
userspace file systems
• + Faster and more convenient development
• + Write and debug code using familiar tools
• - Performance is often slower

• FUSE Consists of three parts:
• FUSE kernel module
• libfuse
• fusermount

Fuse Kernel Module

https://cdn-images-1.medium.com/max/1600/1*cExIHzPTy_RoRJalDui9pA.png

We implement code here
Applications use standard

VFS interface

“Userspace side” of FS Implementation

• libfuse provides an implementation of the FUSE interface
for communicating with the FUSE kernel module.
• libfuse v3 broke backwards compatibility;

we’ll be using v2.9.5 (the default version on Ubuntu 20.04)
• Look at appropriate “git tag” to see correct source code

• By following templates in the examples/ directory, we can
see what infrastructure “simple” file systems require

• General idea: similar to implementing a “real” file system
• implement well-defined functions
• register a C struct that holds our function pointers so our

code is called by FUSE daemon (hooks)

Fusermount

• Mounting a file system typically requires root privileges
• Users can mount/unmount their own FUSE filesystems.

• The fusermount program is installed setuid root.
• However, there are restrictions:

• You can only mount a FUSE FS on a mountpoint where your
user has write permission

• Notes on general workflow:
• Running your compiled FUSE FS program will mount it
• Using the standard mount utility lists all mounted file systems,

including FUSE file systems
• fusermount -u mntpnt can unmount your FUSE FS

Common Uses for FUSE FSes

• “Pass-through” file system
• fusexmp.c

• “Pseudo” file system
• hello.c

• Prototypes/proof-of-concept designs
• TokuFS

• Adding functionality that would be hard to provide
inside the kernel
• E.g., FS that relies on user-space libraries or APIs

Example: “fusexmp.c” Pass-through FS

App1

VFS

fusexmp.c

ext4

FUSE Driver

App1 performs an operation on a file

1

1

The request is sent to the FUSE driver2

2

The FUSE driver calls the corresponding
function in fusexmp.c

3

3

fusexmp performs the requested operation
on the underlying file system (here, ext4).

4

4

When fusexmp is done, it returns from the
FUSE function to the FUSE Driver

5

5

The FUSE driver returns back to the VFS6

6

The VFS returns back to the application7

7

Goal: pass operations through to lower FS,
(ext4) as if the FUSE FS was not there

Example: “hello.c” In-memory FS

https://msreekan.com/2012/05/22/fuse-file-system-port-for-embedded-linux/

Goal: simulate a single read-only file.
The file is called “hello”; it does not exist

on disk and it cannot be modified.

FUSE Demo

• Compile a FUSE FS

• Run the FS to mount it

• Example usage

• Unmount using fusermount

Remember to use appropriate gcc flags

In example, the argument is the mount point

Operations on your file system are translated into calls to your FUSE functions

Use the -u flag

