
File System API
CS333 :: Storage Systems

Williams College

File Systems are Mediators
● An FS is a part of the operating

system that mediates access to
storage and implements the file
abstraction for applications

● The File System API provides a
standard way to:

○ Manage identifiers & namespaces
○ Enforce permissions
○ Access and modify contents
○ Express guarantees for specific behaviors

app0 appN

file systems &
OS infrastructure

Storage

…

FS API

"File" is an Overloaded Term
● As a colloquial term:

○ A file is some "unit" of persistent data that we can refer to by name
● As an abstraction:

○ A file is "a linear array of bytes, each of which you can read or write" — (ch. 39)
○ Files are organized into a hierarchy using directories (a type of file), where

■ "Data files" are mutable & byte-addressable
■ "Directory files" are formatted listings of files that form a tree

● As a data structure:
○ Each OS process has its own array of "open files", and the file data structure

keeps track of some in-memory state to facilitate interacting with open files
■ current offset (where the next read or write will start)
■ access mode (a subset of the legal operations that a process is allowed)

● Path name (high-level)
○ Concatenation of each path component,

separated by '/'
■ Components need not be unique

● Inode number (low-level)
○ Unique object identifier
○ Provides useful "layer of indirection"

● File descriptor index
○ Unique per-process index into

open file table
■ Allocated when file is open
■ Recycled when files are closed

Three Key Identifiers
There are three types of identifiers that
describe files, one for each "type"

/

foo bar

bar foobar.txt

bar.txt

0
1
2
3
…

off: 47
mode: rw

off: 0
mode: r

path
comp.

inode
num

foo
bar

100
47

bar

Indirection/Index nodes
An inode is a data structure that most closely resembles the idea of
"file contents"

● has a size, permissions, access times, an array of "blocks", etc.

Human-readable path names each refer to an inode, and the OS
typically starts FS requests by translating from a human-readable
name/high-level (path) to a FS-specific/ow-level name (inode num)

$ stat /home/bill/foo.txt
$ File: foo.txt
 Size: 268 Blocks: 8 IO Block: 131072 regular file
 Device: 3ah/58d Inode: 15007945 Links: 1
 Access: (0640/-rw-r-----) Uid: (10255/ bill) Gid: (10255/ bill)

 Access: 2019-09-11 11:09:13.986065000 -0400
 Modify: 2019-09-11 11:16:29.113886000 -0400

 Change: 2019-09-11 11:16:29.113886000 -0400

The Namespace Hierarchy
● Our files form a tree, rooted at '/'

○ (We will not get into how we initialize an "empty file system" yet)

path
comp.

inode
num

.

..
foo
bar

7
3
100
47

path
comp.

inode
num

.

..
bar.
txt

10
3

18

/

foo bar

bar foobar.txt

bar.txt

● Directories are "special" files in the sense that they have a
particular structure and set of directory-specific operations

○ directories contain a listing of children
○ for each child pathname, they store its associated inode number

path
comp.

inode
num

.

..
20
3

(baz)

Directories
● To create a directory, we use mkdir, which:

○ Creates a new directory file that contains only '.' (this dir) and '..' (parent dir)
■ we use these "dot" entries to navigate up and down the tree

○ Modifies parent directory with new entry's (path, inode num) pair

path
comp.

inode
num

.

..
foo
bar

7
3
100
47

/

foo bar

bar foobar.txt

bar.txt

$ cd /bar
$ mkdir baz

baz

baz 20

Directories
● To list a directory's contents, we use readdir

○ walks through items in directory file, and for each child's (path, inum) pair, emits
details (populates a "struct dirent")

/

foo bar

bag boxfan.txt

bin.txt

struct dirent {
 char d_name[256]; // filename
 ino_t d_ino; // inode number
 off_t d_off; // offset to the next dirent
 unsigned short d_reclen; // length of this record
 unsigned char d_type; // type of file
};

Directories
● To delete a directory contents, we use rmdir

○ Directory must be empty other than . and ..

baz

/

foo bar

bar foobar.txt

bar.txt

$ cd /bar
$ rmdir foo
 rmdir: failed to remove 'foo':

 Directory not empty

$ rmdir baz # succeeds!

Error!

Processes Open Files
● open gives us a way for processes to interact with files

○ In its simplest form, open takes two arguments: a path name and flags
■ The path is traversed to find its associated inode
■ The flags specify an access mode (O_RDONLY, O_WRONLY, or O_RDWR)

● The file system checks the permissions of the inode*, and if the
flags are a subset of the legal capabilities, then open returns a file
descriptor

○ (A file descriptor is an index into the processes open file table, see next slide)

File Descriptor Table
Each process has a table that tracks its open files

● File descriptors are integer table indexes
● Table entries store information about a

process's interaction with a file. Importantly:
○ The access mode for this particular interaction
○ The current offset

● Thus, the same file can be opened multiple
times, with reading and writing
happening at different offsets

0
1
2
3
4

off: 0
mode: rw

off: 0
mode: r

int fdA = open("foo", O_RDRW);

(fdA == 2, fdB == 3 in above example)

int fdB = open("foo", O_RDONLY);

Accessing/Modifying Data
● On success, the read and write system calls advance the

offset associated with a specific file descriptor
○ Done for convenience, so next read/write picks up where the last left off

● You can also advance a file descriptor's offset manually using
lseek

int fd = open("foo", O_RDRW); // offset is at 0
read(fd, buf, 100); // advances offset to 100
read(fd, buf, 100); // advances offset to 200
lseek(fd, 32, SEEK_SET); // offset is set to 32

IMPORTANT: functions can fail (or partly fail). We need to check all
return values and understand the different modes of success/failure

Accessing/Modifying Data
● The pread and pwrite system calls DO NOT advance the

offset associated with a specific file descriptor
○ Instead, must provide starting offset as part of function call

int fd = open("foo", O_RDRW); // offset is at 0
read(fd, buf, 100); // advances offset to 100
read(fd, buf, 100); // advances offset to 200
lseek(fd, 32, SEEK_SET); // offset is set to 32

int fd2 = open("foo", O_RDRW); // offset is at 0
pread(fd, buf, 100, 0); // reads 100 bytes from offset 0
pread(fd, buf, 100, 100); // reads 100 bytes from offset 100
// offset was never changed, so it is still 0
lseek(fd, 32, SEEK_SET); // offset is set to 32

Paths + Inodes = Indirection
High-level and low-level names provide a "layer of indirection"

● Each path name "points" to one inode, but not necessarily 1-to-1

"Pointing" multiple paths to the same inode can be done with link

● Changes made using one path are reflected in the other since
they share the same underlying inode (low-level name)

● Deleting (unlink) one pathname does not alter the other

inode #300
link count: ?

creat("/home/foo", S_IRUSR|S_IWUSR); //link count=1
link("/home/foo", "/home/bar"); //link count=2
unlink("/home/foo"); //link count=1

/home/foo

/home/bar

Links - Hard and Soft
We can also use indirection at the "path" level rather than the "inode"

A symbolic link is a special type of file that has contains a path that is
"resolved" instead:

● When I ask to open a symbolic link, the FS instead tries to open
the path stored inside the symbolic link file

○ If that path doesn't actually exist, this is called a "dangling link"
● Note: we can create infinite loops if we're not careful (or not nice)

○ The OS prevents this by giving up after a fixed number of tries

bill@unix:~-> ls -l /bin/python3

lrwxrwxrwx 1 root root /bin/python3 -> python3.8*

Indirection Gives Fast Renames
The rename system call removes a pathname from the directory
hierarchy at one location and inserts it into the directory hierarchy at
another

● Renaming a file is atomic
○ Either the rename happens completely or it doesn't happen at all
○ Intermediate state is never visible: the file always exists at exactly one location

● Renaming a directory moves all children with it
○ This is is possible because directories map path components to inode numbers

rather than absolute paths to inode numbers

Rename is a source of considerable trickery and abuse. Many
applications take advantage of its atomicity.

Caching improves Performance

● Caching can help!
○ When we write data, the FS may cache it in RAM so that future writes can be

aggregated in a single I/O
○ We don't have to worry about caching—it happens automatically

Are there downsides to caching? Maybe...

● Potential downside 1: Duplication of work
○ What if applications already do their own caching?

■ open the file with the O_DIRECT flat
● Potential downside 2: Data loss on a crash

○ We need a way to tell the FS we really need our data to be written
■ The fsync function tells the FS to write all uncommitted data immediately

File are byte-addressable, but our media often is not

Important FS API functions
Covered in this video

● open/creat
● close
● read/pread
● write/pwrite
● fsync
● rename
● link/unlink
● mkdir
● readdir
● rmdir
● lseek

Not covered but important:

● stat/fstat
● mount/unmount

