FFS: Fast File System

Williams College
CS333

This Video

 FFS: Fast file system
 (General FFS structure
* Overview of FFS goals

* Explanation of the FFS allocation heuristics and
their implications on performance

Recall: Key Ref. FS Data structures

e |node

* Persistent information about a single file

e Superblock

e Persistent information about entire file system

e Allocation structures

* |node bitmap, data bitmap

Today: Key FFS Data structures

e |node

* Persistent information about a single file

e Superblock

e Persistent information about entire file system

e Allocation structures

* |node bitmap, data bitmap

FFS set the stage for FS design

The FFS Designers:
* Thought hard about HDD performance
* Abstracted common file system structures & methods
* |dentitied performance bottlenecks
* Implemented “Common sense” heuristics

* Use device awareness to improve performance
 Downsides to device awareness?

Problem 1: Dependent Reads

 Jo read file data, must first read the inode

Core issue: data and metadata separation can

cause long seeks.

Problem 2: Small Block Size

 How does grep work”
 $grep -r “pattern” .
* We want our file system’s |/O to be purely sequential

* Or at least, we want to maximize the amount of time
spent transferring data relative to time wasted doing
/O setup (seeking-+rotating)

e Because FS blocks are small, we can’t afford to seek
for each LBA

Problem 3: Free Space Fragmentation

* |n order to allocate an object, we need to find a
region of free space to hold it.

 Can’t we just use first fit LBA allocation?

* Allocating blocks one at a time leads to
significant fragmentation!

Blocks within a single file may be scattered

Related files may be far away from each other

|deas

Key idea: Keep related things together

FFS Techniques:

* Cylinder groups (block groups)

e Set of coordinated a
irectory a
locatl

e A
eb

locatio
on

location heuristics for:

i

ock allocation

Cylinder Groups

 Disks don't just have one platter:
they have an array of platters and
disk arms that move as a unit.

A cylinder group is a vertical slice
through the platters, where each
slice consists of contiguous tracks

e A “narrow seek window”

Since neighboring LBAs should
correspond to neighboring tracks
In a cylinder group, we can
abstract this idea into a block
group: a contiguous region of the
LBA space

Single track (e.g., dark gray)

of drive across different surfaces
[all tracks with same color]
I

Cylinder
Tracks at same distance from center

|[OSTEP ch 41]

Cylinder Group:
3, first group does

not include black track]

Set of N consecutive cylinders
[if N

Block Groups to Improve Locality

Recall the on-disk format of our reference file

system design:

0 LBAmAX

FFES replicates this format in each block group:

i
g

Block Group 1 Block Group 2 Block Group N
0 LBAmax

Block Groups to Improve Locality

e Superblock is replicated in each block group
e SBis very important: this is simply done for redundancy

. IS “distributed”™ across block groups
 (Goal is to keep inodes close to the data they describe
 Only one copy of each inode is stored
e Fixed number of inodes stored per block group

 \When possible, allocate a file’s first blocks Iin the same
block group that its inode is stored

 Minimizes the distance to seek when reading the inode
and reading the beginning of the file (very common op)

Coordinated Allocation Heuristics

Goal: store related things near each other

 What things are “related”?
* A single file’'s blocks

* Why? We often read ftiles in their entirety
* Files in the same directory (siblings)

 Why” Directory hierarchy expresses relationships

Goal: Store Related Things Near Each Other

When allocating files in the same directory (siblings):

e Strategy 1: Allocate a directory’s inode in the
B.G. with the most free inodes

 Hopefully, this leaves room for its future
children

e Strategy 2: Allocate a file’s inode in the same
B.G. as its parent directory’s inode

Goal: Store Related Things Near Each Other

When Allocating a single file’'s blocks
e Strategy: Allocate “chunks” of data together
e Put all direct-pointed-to blocks in inode’s B.G.
* Allocate successive “chunks” together
* All blocks a single indirect block points to
= For each dependent read, we get a chunk of data from the seek

 Why not put all of a file’s blocks in the same B.G.7
e Large files “crowd out” other files in B.G.
 Don't necessarily know how large a ftile will ultimately grow

* This is called the “large file exception”™—for large files, a single
seek still finds a significant amount of data

Allocation Examples (simplified)

 Three directories:
e /
e /a
e /b

e Four files:
e /a/c
e /a/d
e /a/e

e Suppose they were allocated
and written in the order above.
Let's apply the rules

group 1nodes data
0 /=== [
1 acde—————- accddee——-
2 bf-———————- bff-—————-
3 ____________________
4 ____________________
5 ____________________
6 ____________________
'7 ____________________
[OSTEP ch 41]

Problems with FFS?

e All rules are heuristics... there are no guarantees!
* Once you make a decision, you're stuck with it
* AgQIng: file system performance degradation over time

* \What operations/workloads might cause problems
over time”?

 What is defragmentation”

e Relocating blocks on disk to restore locality

Recap

* FFS is an influential File System Design—it is the
canonical “update-in-place” file system

* Once we place a block, updates to that block are
made “in-place” by overwriting the contents

* Created commonsense rules to improve performance
based on observations about application behaviors

* Despite limitations, FFS ideas still used in practice today

* ext4 builds on key components of FFS design

