
FFS: Fast File System
Williams College

CS333

This Video

• FFS: Fast file system

• General FFS structure

• Overview of FFS goals

• Explanation of the FFS allocation heuristics and
their implications on performance

Recall: Key Ref. FS Data structures

• Inode

• Persistent information about a single file

• Superblock

• Persistent information about entire file system

• Allocation structures

• Inode bitmap, data bitmap

Today: Key FFS Data structures

• Inode

• Persistent information about a single file

• Superblock

• Persistent information about entire file system

• Allocation structures

• Inode bitmap, data bitmap

FFS set the stage for FS design

The FFS Designers:

• Thought hard about HDD performance

• Abstracted common file system structures & methods

• Identified performance bottlenecks

• Implemented “Common sense” heuristics
• Use device awareness to improve performance

• Downsides to device awareness?

Problem 1: Dependent Reads

• To read file data, must first read the inode

Core issue: data and metadata separation can
cause long seeks.

Problem 2: Small Block Size

• How does grep work?

• $ grep -r “pattern” .

• We want our file system’s I/O to be purely sequential

• Or at least, we want to maximize the amount of time
spent transferring data relative to time wasted doing
I/O setup (seeking+rotating)

• Because FS blocks are small, we can’t afford to seek
for each LBA

Problem 3: Free Space Fragmentation

• In order to allocate an object, we need to find a
region of free space to hold it.

• Can’t we just use first fit LBA allocation?

• Allocating blocks one at a time leads to
significant fragmentation!
• Blocks within a single file may be scattered
• Related files may be far away from each other

Ideas

Key idea: Keep related things together

FFS Techniques:

• Cylinder groups (block groups)

• Set of coordinated allocation heuristics for:
• Directory allocation
• File Allocation
• File block allocation

Cylinder Groups

• Disks don’t just have one platter:
they have an array of platters and
disk arms that move as a unit.

• A cylinder group is a vertical slice
through the platters, where each
slice consists of contiguous tracks
• A “narrow seek window”

• Since neighboring LBAs should
correspond to neighboring tracks
in a cylinder group, we can
abstract this idea into a block
group: a contiguous region of the
LBA space

LOCALITY AND THE FAST FILE SYSTEM 3

41.2 FFS: Disk Awareness Is The Solution

A group at Berkeley decided to build a better, faster file system, which
they cleverly called the Fast File System (FFS). The idea was to design
the file system structures and allocation policies to be “disk aware” and
thus improve performance, which is exactly what they did. FFS thus ush-
ered in a new era of file system research; by keeping the same interface
to the file system (the same APIs, including open(), read(), write(),
close(), and other file system calls) but changing the internal implemen-
tation, the authors paved the path for new file system construction, work
that continues today. Virtually all modern file systems adhere to the ex-
isting interface (and thus preserve compatibility with applications) while
changing their internals for performance, reliability, or other reasons.

41.3 Organizing Structure: The Cylinder Group

The first step was to change the on-disk structures. FFS divides the
disk into a number of cylinder groups. A single cylinder is a set of tracks
on different surfaces of a hard drive that are the same distance from the
center of the drive; it is called a cylinder because of its clear resemblance
to the so-called geometrical shape. FFS aggregates N consecutive cylin-
ders into a group, and thus the entire disk can thus be viewed as a collec-
tion of cylinder groups. Here is a simple example, showing the four outer
most tracks of a drive with six platters, and a cylinder group that consists
of three cylinders:

Single track (e.g., dark gray)

C
yl

in
d
e
r:

T
ra

ck
s

a
t
sa

m
e
 d

is
ta

n
ce

 f
ro

m
 c

e
n
te

r
o
f
d
ri
ve

 a
cr

o
ss

 d
iff

e
re

n
t
su

rf
a
ce

s
[a

ll
tr

a
ck

s
w

ith
 s

a
m

e
 c

o
lo

r]

C
yl

in
d
e
r

G
ro

u
p
:

S
e
t
o
f
N

 c
o
n
se

cu
tiv

e
 c

yl
in

d
e
rs

[if
 N

=
3
,
fir

st
 g

ro
u
p
 d

o
e
s

n
o
t
in

cl
u
d
e
 b

la
ck

 t
ra

ck
]

Note that modern drives do not export enough information for the
file system to truly understand whether a particular cylinder is in use;
as discussed previously [AD14a], disks export a logical address space of
blocks and hide details of their geometry from clients. Thus, modern file

c© 2008–19, ARPACI-DUSSEAU
THREE

EASY

PIECES

[OSTEP ch 41]

Block Groups to Improve Locality

• Recall the on-disk format of our reference file
system design:

0 LBAMAX

SU
PE

R
i-m

ap Data 
bitmap Data RegionInode 

table …

• FFS replicates this format in each block group:

LBAMAX

[Block Group 1
0

[Block Group 2 [Block Group N

…

Block Groups to Improve Locality

• Superblock is replicated in each block group
• SB is very important: this is simply done for redundancy

• Inode table is “distributed” across block groups
• Goal is to keep inodes close to the data they describe
• Only one copy of each inode is stored
• Fixed number of inodes stored per block group

• When possible, allocate a file’s first blocks in the same
block group that its inode is stored
• Minimizes the distance to seek when reading the inode

and reading the beginning of the file (very common op)

Coordinated Allocation Heuristics

Goal: store related things near each other

• What things are “related”?
• A single file’s blocks

• Why? We often read files in their entirety
• Files in the same directory (siblings)

• Why? Directory hierarchy expresses relationships

When allocating files in the same directory (siblings):
• Strategy 1: Allocate a directory’s inode in the

B.G. with the most free inodes
• Hopefully, this leaves room for its future

children
• Strategy 2: Allocate a file’s inode in the same

B.G. as its parent directory’s inode

Goal: Store Related Things Near Each Other

Goal: Store Related Things Near Each Other

When Allocating a single file’s blocks
• Strategy: Allocate “chunks” of data together

• Put all direct-pointed-to blocks in inode’s B.G.
• Allocate successive “chunks” together

• All blocks a single indirect block points to
➡ For each dependent read, we get a chunk of data from the seek

• Why not put all of a file’s blocks in the same B.G.?
• Large files “crowd out” other files in B.G.
• Don’t necessarily know how large a file will ultimately grow
• This is called the “large file exception”—for large files, a single

seek still finds a significant amount of data

Allocation Examples (simplified)

• Three directories:
• /
• /a
• /b

• Four files:
• /a/c
• /a/d
• /a/e
• /b/f

• Suppose they were allocated
and written in the order above.
Let’s apply the rules

6 LOCALITY AND THE FAST FILE SYSTEM

unrealistically small numbers), and that the three directories (the root di-
rectory /, /a, and /b) and four files (/a/c, /a/d, /a/e, /b/f) are
placed within them per the FFS policies. Assume the regular files are each
two blocks in size, and that the directories have just a single block of data.
For this figure, we use the obvious symbols for each file or directory (i.e.,
/ for the root directory, a for /a, f for /b/f, and so forth).

group inodes data
0 /--------- /---------
1 acde------ accddee---
2 bf-------- bff-------
3 ---------- ----------
4 ---------- ----------
5 ---------- ----------
6 ---------- ----------
7 ---------- ----------

Note that the FFS policy does two positive things: the data blocks of
each file are near each file’s inode, and files in the same directory are
near one another (namely, /a/c, /a/d, and /a/e are all in Group 1, and
directory /b and its file /b/f are near one another in Group 2).

In contrast, let’s now look at an inode allocation policy that simply
spreads inodes across groups, trying to ensure that no group’s inode table
fills up quickly. The final allocation might thus look something like this:

group inodes data
0 /--------- /---------
1 a--------- a---------
2 b--------- b---------
3 c--------- cc--------
4 d--------- dd--------
5 e--------- ee--------
6 f--------- ff--------
7 ---------- ----------

As you can see from the figure, while this policy does indeed keep file
(and directory) data near its respective inode, files within a directory are
arbitrarily spread around the disk, and thus name-based locality is not
preserved. Access to files /a/c, /a/d, and /a/e now spans three groups
instead of one as per the FFS approach.

The FFS policy heuristics are not based on extensive studies of file-
system traffic or anything particularly nuanced; rather, they are based on
good old-fashioned common sense (isn’t that what CS stands for after
all?)1. Files in a directory are often accessed together: imagine compil-
ing a bunch of files and then linking them into a single executable. Be-

1Some people refer to common sense as horse sense, especially people who work regu-
larly with horses. However, we have a feeling that this idiom may be lost as the “mechanized
horse”, a.k.a. the car, gains in popularity. What will they invent next? A flying machine??!!

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG

[OSTEP ch 41]

Problems with FFS?

• All rules are heuristics… there are no guarantees!

• Once you make a decision, you’re stuck with it

• Aging: file system performance degradation over time

• What operations/workloads might cause problems
over time?

• What is defragmentation?

• Relocating blocks on disk to restore locality

Recap

• FFS is an influential File System Design—it is the
canonical “update-in-place” file system

• Once we place a block, updates to that block are
made “in-place” by overwriting the contents

• Created commonsense rules to improve performance
based on observations about application behaviors

• Despite limitations, FFS ideas still used in practice today

• ext4 builds on key components of FFS design

