
ReFS Starter Code
CS333 :: Storage Systems

Williams College

ReFS Design
● Largely based on the reference file system in OSTEP ch. 40
● The differences are minor, and were made with the goal of

simplifying our FS implementation:
○ Bitmaps are located immediately next to structures they track

■ See slide "Disk Format"
○ Directory data blocks use fixed-size entries, letting us treat directory data

blocks as "arrays of entries"
■ See slide "Directory Structure"

FUSE infrastructure & organization
● Our FUSE implementation writes data to a file, not a disk

○ We will treat this file like a disk by reading/writing in 4096-byte blocks
■ This lets us simulate our "on disk structure" inside a 10 MiB file

application FUSE ReFS

FS API

VFS FUSE Kernel
Module

ReFS ops

read_blocks(),
write_blocks()

"refs_disk" file

SB inode
bitmap

inode
table

data
bitmap … data region ...

Managing Allocations with Bitmaps
bitmap.c includes a "readable" implementation of a bitmap structure

● includes tests that show example usage
○ protected by `#ifdef BITMAP_TEST` so they are compiled out by default

● In-memory bitmap contains summary info & actual bitmap data

4096

1024

0x5437bae

unit64_t n_bytes

uint64_t n_valid_bits

char *bits

0001001010...

1024 bits
8 bits/byte = 128 bytes

4096 bytes
(128 bytes rounded up to nearest block)

struct bitmap:

ReFS Metadata Structures
refs.h includes minimal data structure definitions for

● struct superblock
● struct inode
● struct directory_entry

Together, these structures form the basis of our file system's metadata
and define on-disk format

● They may need to be adjusted as your implementation supports
more features, so please make adjustments

○ e.g., struct refs_inode does not include a "mode", which is needed for
permissions (if you choose to implement that feature)

ReFS "on-disk" Format (stored in refs_disk)
struct refs_superblock is located at "block 0", and it includes:

● the FS block size (4096 bytes)
● the location information for all major on-disk structures

struct refs_superblock:
block_size 4096
num_inodes 1024
i_bitmap_start 1
i_table_start 2
num_data_blocks 2492
d_bitmap_start 66
d_region_start 67

SB Inode
Bitmap

Inode
Table

Data
Region

Data
Bitmap... ...

0 1 2 66 67

"Inode table" is an array of padded inodes
● struct refs_inode stores information about a single file
● union inode exists so that we can align our inode table to block

boundaries.
○ Since char pad[INODE_SIZE] is larger than struct refs_inode;, it adds padding

struct refs_inode for /
flags INODE_IN_USE |
 INODE_TYPE_DIR
n_links 2
inum 0
size 4096
blocks 1
blk_ptrs [67][0][0]...

...

PADDING

4096-byte Block Boundary

Note: when we read an inode, we must:
 - identify which 4096-byte block that inode belongs to
 - access the particular inode from the array of inodes in that block

struct refs_inode for /
flags INODE_IN_USE |
 INODE_TYPE_DIR
n_links 2
inum 0
size 4096
blocks 1
blk_ptrs [67][0][0]...

Directories are arrays of struct dir_entry
● struct dir_entry maps an inode number to a path component

○ We use a fixed-size entry to simplify the design, but this means we need to store
the length that the actual path string uses

○ We also use an "is_valid" flag to logically delete entries. this saves us from needing
to shift all later array entries back by one position whenever we delete value

SB Inode
Bitmap

Inode
Table

Data
Region

Data
Bitmap... … … … …

inum valid? len path[MAX_PATH_LEN]

0 1 3 ".."

1 1 2 "."

47 0 8 "deleted"

51 1 4 "foo"

Mounting ReFS
When you mount, refs.c does one of two things:

1. If the file refs_disk exists, refs.c reads the superblock (block 0),
then populates the ReFS in-memory data structures using the
contents of that existing file system

2. If the file refs_disk does not exist, refs.c creates an empty
10-MiB file called refs_disk, and then creates the "/" directory

○ This involves allocating inode 0, and creating a directory data block with entries
for "." and ".."

○ The now-initialized file system is written to refs_disk, making it persistent

Summary
The starter code is there as a template

● You may modify it as you see fit, or ignore it entirely

If you use the starter code, you may need to add new fields to your
data structures if necessary to implement functionality

● For example, if you want to add permissions to files, you may want
to add field in the struct inode to store the mode

