
What is a process?
What is an address space?
What is a system call?

If we focus on Linux, there are many system calls (~300), but only some of them specifically relate to the
storage subsystem. The system calls discussed in OSTEP Chapter 39 are enumerated below, and they are the
ones that you will likely use most in this class. You should be familiar with all of them: both how to use them (or
how to look up their usage using Unix  man  pages) and how they affect the state of the storage system's key
data structures. Memorization is less important than thinking about why the interface is designed the way it is.

 open / creat 
 close 

 read 

 write 

 lseek 

 pread / pwrite 
 fsync 

 rename 

 stat / fstat 
 unlink 

 mkdir 

 readdir 

 rmdir 

 unlink 

 mount 

 umount 

How do you look up the interface for any one of these system calls?
How can you tell what system calls are performed when you run a program from the command line?

CS 333 :: Meeting 01 :: File System API

Background

The File System API

FS System Calls

Action items



There are multiple ways to refer to files, each with their own advantages and disadvantages. You should be
familiar with the types of identifiers that are passed to each FS-related system call, and why that particular
identifier is used. What are the uses, advantages, and disadvantages for each of the following types of
identifiers?

inode number
path
file descriptor

Which of the three identifiers must be unique and in what namespaces/contexts are they unique (per-
process, component-wise, and/or globally unique)?
Which identifiers are easy to remember? Have intuitive interpretations?
What types of relationships do each identifier type allow us to specify?
What are the relationships between each type of identifier and the two types of links: hard and symbolic?
Can you think of any other types of identifiers that could be used to describe a logical unit of storage (e.g.,
a file, an object)

Each process contains a private table that maps file descriptors (per-process integer identifiers) to file data
structures. We should try to be precise when we use the term file: colloquially file has a meaning that is similar-
to-but-very-different-from the file data structure that is part of the file system API in the Unix kernel.
Unfortunately always being precise is difficult, so context should be helpful when determining what is meant by
the word file.

What field(s) are stored in the file data structure?
What system calls alter those fields, and in what ways?

Think of a task you would want to perform on a file. You should be able to describe how the file data
structure's state would change after successful completion of that task, and be able to describe the
system call(s) that you would execute to produce those changes.

What are the relationships among the file data structure, a process, and the notion of a file that we
colloquially use (a named unit of persistent storage)?
Thinking forward to next class: what is the granularity of access to a file? What is the granularity of access
to a block device like a HDD? What challenges might arise as a result of this mismatch? The file system's
job is to impose structure over an unordered array of blocks; first we will study the block interface and
block device characteristics, then how file systems handle these peculiarities.

 

Names

Questions

files (the data structure)



Directories do not store "data" in the typical sense. Directories are a particular type of file that contains a
mapping from pathnames to  inode  numbers.

All directories contain two files by default:  .  and  .. . What are these files and what is their purpose?
As a result of these special files, what is the "link count" of an empty directory?

 rmdir  deletes a directory. What are the necessary preconditions for the successful deletion of a
directory? Why do you think this decision was made?

Which type of the three identifiers (i.e., inode number, pathname, or file descriptor, as described in the
Names section above) do you pass as an argument to  open ?
What type of identifier does  open  return?
There are three types of identifiers listed above... why isn't the third type of name used?
What is the difference between  open  and  creat ? Given this relationship, how might you implement
 creat ?
What is a capability, and why does the book claim that a file descriptor is a capability?

What is meant by a hard link and a symbolic link?
Reference counting is an important concept in file systems (and other systems for that matter). Which type
of link (hard or symbolic) increases an  inode 's reference count?

What system call lowers an  inode 's reference count?
What is meant by a dangling reference?
In what scenarios would you use a hard link, and in what scenarios would you use a symbolic link?
Name one common use of a symbolic link (hint: type  which python  at the command line, and then check
the long listing ( ls -l ) of the resulting pathname)

What is a "tree" and why is it important that the file system namespace is a "tree"?
How does Unix use a tree to let us combine multiple file systems?
What is a "path lookup" and what are the steps involved in taking an absolute path and opening a file?
(This isn't described in detail in the assigned readings, and it is actually a very complicated process. Think
about the file system tree, speculate about the high-level steps, and try to identify situations when a path
lookup might fail.)
What does it mean to mount a file system?
What happens when you mount a file system on top of an existing subtree (what contents do you see
when you navigate to the root of that subtree, i.e. the mount-point)?
What happens when you unmount a file system?

directories

open

links

File Systems and Trees



What is the outcome of calling  fsync  (i.e., can you describe possible initial and final states of a file
before/after calling  fsync )?
Why do we need  fsync  at all? Why not immediately persist all data?
Based on the existence of  fsync , what guarantees does the  write  system call actually provide?
Thinking forward to next class: Given the granularity of access supported by block devices, what types of
things could go wrong if an application calls  fsync  and proper care is not taken in the application/file
system implementations? What types of guarantees might be desirable for a system to support? Why are
they not standard guarantees?

Renaming a file is a seemingly simple task. Yet the deeper you dive into the  rename  system call, the more
interesting it becomes.  rename  is the first time we encounter the concept of atomicity.

What is the outcome of a successful  rename ?
What are the ways that  rename  can fail?

What errors does rename report, and what are the possible states that can result in the system when
there is a  rename  failure?

Given the strict requirements of  rename  atomicity,  rename  is often used to update files. What
combination of system calls could you use to perform a series of file modifications so that either all of your
modifications are reflected in the final state of the file, or none of your modifications are reflected in the final
state of the file?

The  lseek  system call updates a  file  data structure's internal offset. This is useful for issuing non-
sequential reads and writes (commonly referred to as random reads and writes, even when the operations are
not random in the mathematical sense).

Does  lseek  modify any persistent file state?
What is the relationship between  lseek ,  read ,  pread ,  write , and  pwrite ?

fsync

rename

lseek


