Be-trees

CSCI 333
Williams College
Bill Jannen

| ast Class

General principles of write optimization
» Buffer updates and apply changes in large batches

LSM-trees

» Operations (Dictionary API, i.e., key-value store interface)
» Performance

LevelDB - SSTables store key-value pairs at each level

Compaction strategies
» Size-tiered - compact K SSTables together when there is
enough data to merge into the next “size tier”
» Level-tiered - compact one SSTable into all SSTables in
the next that have overlapping key ranges

This Class

e Be-trees
» Operations
» Performance

* Choosing parameters to tune performance

 Compare against B-trees and LSM-trees

Big Picture:
Write-Optimized K-V Stores

 New class of data structures first developed in the '90s
¢ LSM TreeS[O’Nen, Cheng Gawlick, & O'Neil '96]

Be-1re € Ssroda & Fagererg 0s

* (COLAS;gender Farach-coton, Fneman, Fogel, Kuzmau & Neison ‘07

o XD | CtS[BrodaI, Demaine, Fineman, lacono, Langerman & Munro '10]

* Queries are asymptotically as fast as a B-tree (at least
they can be in “good” data structures)

* Inserts/updates/deletes are orders-of-magnitude faster
than a B-tree

B & _t re e S [Brodal & Fagerberg '03]

e Be-trees: an asymptotically optimal key-value store
» Fast in the best cases, good bounds on the worst-cases

e Be-tree searches are just as fast as™ B-trees

* Be-tree updates are orders-of-magnitude faster”

*asymptotically, in the DAM model

B and € are parameters:
- B = how much “stuff” fits in one node

€ » fanout = how tall the tree is

O(/ongN)

O(N/B) leaves

B & _t re e S [Brodal & Fagerberg '03]

» Be-tree leaf nodes store key-value pairs

* Internal Be-tree node buffers store messages
» Messages target a specific key
» Messages encode a mutation

 Messages are flushed downwards, and eventually
applied to key-value pairs in the leaves

High-level: messages + LSM/B-tree hybrid

Be-tree Operations

* Implement a dictionary on key-value pairs
» insert(k,v)
m v = search(k)
s {(ki,Vi), .. (kj, Vv5)} = search(ki, k2)
= delete (k)

* New operation:
» upsert(k, f, A)

/ Talk about soon!

Be-tree [Inserts

All data is inserted to
/ the root node’s buffer.

Be-tree [Inserts

When a buffer fills, contents
are flushed to children

Be-tree [Inserts

Be-tree [Inserts

Be-tree [Inserts

Flushes can cascade if not
enough room in child nodes

Be-tree [Inserts

Invariant: height in the tree
preserves update order

/

.

»
=
e

Flushes can cascade if not
enough room in child nodes

Be-tree Searches

Read and search all nodes
on root-to-leaf path

Newest insert is closest
to the root.

Search all node buffers
for messages
applicable to target key

Upadates

* |n many systems, updating a value requires:

read! mOdIny erte _ e.g., FFS writes, SSD blocks

* Problem: Be-tree inserts are faster than searches
» fast updates are impossible if we must search first

a)

upsert = update + insert
k Y

Upsert messages

 Each upsert message contains a:
e Jarget key, k
« Callback function, f

« Set of function arguments, A

 Upserts are added into the Be-tree like any other message

 [he callback is evaluated whenever the message is applied
» Upserts can specity a modification and lazily do the work

Be-tree Upserts

upsert(k, f,A)

Be-tree Upserts

Upserts are stored in the
/ tree like any other operation

Be-tree Upserts

Be-tree Upserts

Searching with Upserts

Read all nodes on root-to-
leaf search path

chronological order

Apply updates in reverse

Upserts don't harm searches, but
they let us perform blind updates.

Thought Question

* What types of operations might naturally be
encoded as upserts”?

Pertformance Model (Retesher)

¢ DlSk ACC@SS MaChIﬂe (DAM) MOdel[Aggarwal&Vitter’88]

* ldea: expensive part of an algorithm’s execution is
transferring data to/from memory

e Parameters:
B: block size
M: memory size
N: data size

Performance = (# of 1/0s)

a4t

O(logn

-N)

Goal: Compare query performance to a B-tree 0(lLoggN)

mBe_tree fanout: ¢
= Be-tree height; O(logp:N)

Rule1: log, (M-N) =log, M +log, N

DI

LogeN

M log, (a) = 108, (3)
Rule2: log, —';l- =log, M —log, N log,.(b)
K

prttle logb (M) - k .|ogb M [https://vvvvvv.khanaoademy.org]

Rule4: log, (1) =0

Rule 5: logb (b) =1 Change of base 'I_ N Rule 6
O _

Rules: log, (bk)-—-k Logg:N : QBB =
OgBb*®

Rule 7: b'ogb(k) =k

Where: b >1, and M, N and k can be any real numbers

but M and N must be positive!

[https://www.chilimath.oom/lessons/advanoed—algebra/logarithm—ruIes/]

7'_; Point Query: O(log 5

I)

O(lOng N)

Q Insert/upsert:

Point Query: O(

Range Query: O(

?

3
logg N

logg N

g

O(logn

-N)

| Range Query: O(

Q Insert/upsert:

?

3
logg N

"' Point Query: O(IOgB N)

g

O(logn

-N)

Goal: Attribute the cost of flushing across all messages
that benefit from the work.

= How many times is an insert flushed?

= How many messages are moved per flush? O(BB?s)
5-581 B
Be 1 1

= How do we “share the work” among the messages”?

e Divide by the total cost by the number of messages

Each flush operation
moves ()(_BgeBs) items

Each insert message is

flushed O(logg-N) times
B — B°®

Batch size divides the insert cost...
Inserts are very ftast!

O(ZOQBE

Recap/Big Picture

e Setup costs are slow = big |/Os improve performance

» Be-trees convert small updates to large |/Os

nserts: orders-of-magnitude faster

e Upserts: let us update data without reading

Point queries: as fast as standard tree indexes

Sange gueries: near-disk bandwidth (w/ large B)

Question: How do we choose B and g7?

Thought Questions

55 | |5
B¢ 1

* Original paper didn’t actually use the term Be-tree (or
spend very long on the idea). Showed there are
various points on the trade-oft curve between B-trees

and Buffered Repository trees

e How do we choose £?

e = 1 corresponds to a B-tree

e = 0 corresponds to a Buffered Repository tree

Thought Questions

 How do we choose B? B"sﬂ B

e [et’s first think about B-trees
 What changes when B is large?
 What changes when B is small?

» Be-trees buffer data; batch size divides the insert cost
 What changes when B is large?
* What changes when B is small?

In practice choose B and “fanout”.

B ~ 2-8MiB, fanout =16

Thought Questions

» How does a Be-tree compare to an LSM-tree”
» Compaction vs. flushing
» Queries (range and point)
» Upserts

Thought Questions

* How would you implement
» copy(old, new)
» delete(“large”) :: kv-pair that occupies a whole leaf?
» delete(“a*|b*|c*”) :: a contiguous range of kv-pairs?

Next Class

 From Be-tree to file system!

