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Different people approach the problem differently...
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How Should | Organize My Data?
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Logging Indexing

Inserting O(1/B)

O(logsN)

™~ Assuming

B-tree
S
Searching O(N/B)

O(logsN)




Are We Forced to Choose’?
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It appears we have a tradeoff between insertion and searching

« B-trees have

» fast searches: 0 (1oggN) Is the optimal search cost
» slow Inserts

* Logging has
» fast insertions
» slow searches: cannot get worse than exhaustive scan



Goal: Data Structural Search for Optimality

B-tree searches are optimal

B-tree updates are not

- We want a data structure with inserts that beat B-tree inserts without sacrificing
on gueries

> This Is the promise of write-optimization



Log Structured I\/Ierge Trees
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Data structure proposed by O’Neil,Cheng, and Gawllck in 1996

» Uses write-optimized techniques to significantly speed up inserts
Hundreds of papers on LSM-trees (both innovating and using)

To get some intuition for the data structure, let’s break it down

Log-structured ¢« Merge -+ TIree
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Log-Structured Merge Trees
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Log-structured

- All data is written sequentially, regardless of temporal ordering

Merge -+ Tree
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Log-Structured Merge Trees
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Log-structured

- All data is written sequentially, regardless of temporal ordering

Merge

» As data evolves, sequentially written runs of key-value pairs are merged

» Runs of data are indexed for efficient lookup
» Merges happen only after much new data is accumulated

Tree




Log-Structured Merge Trees
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Log-structured

- All data is written sequentially, regardless of temporal ordering

Merge

» As data evolves, sequentially written runs of key-value pairs are merged

» Runs of data are indexed for efficient lookup
» Merges happen only after much new data is accumulated

Tree

» The hierarchy of key-value pair runs form a tree
» Searches start at the root, progress downwards



Log Structured Merge Trees
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Start W|th [0 Ne|I 96], then describe LevelDB

We will discuss:
» Compaction strategies
» Notable “tweaks” to the data structure
« Commonly cited drawbacks
» Potential applications
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[O Nell Cheng, Gawllck ’96]
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An LSM tree comprises a hierarchy of trees of increasing size

» All data inserted into in-memory tree (Co)
» Larger on disk trees (Ci-o) hold data that does not fit into memory

C1q tree Co tree
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(D)isk Memory
Figure 2.1. Schematic picture of an LSM-tree of two components
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When a tree exceeds |ts size limit, its data is merged and rewritten

» Higher level is always merged into next lower level (Ci merged with Ci.1)
» Merging always proceeds top down

Ck tree Co. C1 tree Co tree

merge  merge merge
=N

S rs—
Disk Memory

Figure 3.1. An LSM-tree of K+1 components
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» Recall mergesort from data structures
» We can efficiently merge two sorted structures

» When merging two levels, newer version key-value pair replaces older (GC)
» LSM-tree invariant: newest version of any key-value pair is version nearest to top of LSM-tree

C, tree Co tree
n
n
N .
u .
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Figure 2.2. Conceptual picture of rolling merge steps, with result written back to disk



LSM-trees are another dictionary data structure
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Maintain a set of key-value pairs (kv pairs)

» Support the dictionary interface
» Lnsert(k, v) -insert a new kv pair, (possibly) replacing old value
» delete(k) - remove all values associated with key k
» (k,v) = query(k) - return latest value v associated with key k

» {(ka, vi), (kz, v2), .., (kij,vi)} = query(ki, ki) -return all key-value pairs in the range
from ki to ki

> Question: How do we implement each of these operations?



Insert(k)
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We msert the key value pair into the in-memory Ievel Co

» Don’t care about lower levels, as long as newest version is one closest to top
» But if an old version of kv-palir exists in the top level, we must replace it
» |f Co exceeds its size limit, compact (merge)

> Inserts are fast! Only touch Co.
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Delete(k)
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We insert a tombstone into the in-memory level, Co
» A tombstone is a “logical delete” of all key-value pairs with key k

» When we merge a tom
» When we merge a tom

nstone wit

nstone wit

N a key-value palr, we delete the key-value pair

N a tombstone, just keep one

» When can we delete a tombstone?

» At the lowest level

» When merging a newer key-value pair with key k

> Deletes are fast! Only touch Co.



Query( )
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Begin our search in the in-memory Ievel Co

« Continue until:
» We find a key-value pair with key k
» We find a tombstone with key k
» We reach the lowest level and fail-to-find

> Searches traverse (worst case) every level in the LSM-tree



Query(k;, k)
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We must search every level, Co...Cn

» Return all keys in range, taking care to:

» Return newest (ki, vi) where Kj < ki < kjsuch that there are no tombstones with key k;jthat are newer
than (ki, vi)

> Range queries must scan every level in the LSM-tree (although not all
ranges in every level)



| evelDB
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Google’s Open Source LSM-tree-ish KV-store



Some Definitions
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LevelDB consists of a hierarchy of SSTables

» An SSTable is a sorted set of key-value pairs (Sorted Strings Table)
» Typical SSTable size is 2MiB

The growth factor describes how the size of each level scales
» Let F be the growth factor (fanout)

» Let M be the size of the first level (e.g., 10MiB)
* Then the ith level, Ci has size FiM

The spine stores metadata about each level

- {keyi, offseti} for a all SSTables in a level (plus other metadata TBD)

» Spine cached for fast searches of a given level
p (if too big, a B-tree can be used to hold the spine for optimal searches)




LeveIDB Example
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In-memory —>
SSTable

In-memory
SSTable

Operation Log Lo: 8 MiB

o W, \ J
[ N ( )
\ J \L J
(- \N( \N( \N( )
- J J J w,
(- NN ( NN ( NN ( N\ ( N\ ( N\ ( N\ ( )

Le: 1 TIB




LeveIDB Example
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In-memory In-memory
SSTable SSTable

Operation Log LO: 8 MiB
\_ _ \ ,
Write operation to log L1: 10 MIB
(immediate persistence) —
é NN ( NN ( NN ( )
° Update in-memory SSTable Lo: 100 MIB
o J J J ,

e (Eventually) promote full SSTable : : : :
and initialize new empty SSTable aYa Ve Ve Ve Yo N Va N

Le: 1 TIB

I\/Ierge/write INn-memory \ J J J J J J J y
SSTables to Lo
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Compaction
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How do we manage the levels of our LSM?

» |deal data management strategy would:

» Write all data sequentially for fast inserts
ata sorted for fast searches
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amplification)
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" times we write each key-value pair (low w

» Good luck making that work!
» ... but let’s talk about some common approaches

rite amplification)



erte optlmlzed Data Structures
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Option 1 Slze tlered

« Each “tier” is a collection SSTables with similar sizes

» When we compact, we merge some number of SSTables with the same size to
create an SSTable in the next tier

]~ e
] _ﬁ Merge

H




Write-optimized Data Structures
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Option 2: Level-tiered
» All SSTables are fixed size
» Each level is a collection SSTables with non-overlapping key ranges

» To compact, pick SSTable(s) from Li and merge them with SSTables in Li.1
» Rewrite merged SSTables into Lit1 (redistributing key ranges if necessary)
» Possibly continue (cascading merge) of Li+1 to Liso

» Several ways to choose (e.g., round-robin or ChooseBest)
» Possibly add invariants to our LSM to control merging (e.g., an SSTable at Liy1 can cover at most X SSTables at Lis1)

Merge SSTable in L with all SSTables in Liz1that have overlapping key ranges,
possibly redistributing key ranges among newly written SSTables.






LSM tree Problems’?
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We wrlte a Iot of data durlng compaction

» Not all data is new
» We may rewrite a key-value pair to the same level multiple times

» How might we save extra writes?

» VI-trees [snetty FasT 18]: If @ long run of kv-pairs would be rewritten unchanged to the next level, instead
write a pointer

* Problems with VT1-trees?

» Fragmentation
» Scanning a level might mean jumping up and down the tree, following pointers

> There iIs a tension between locality and rewriting



LSM-tree Problems?
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We write a lot of data during compaction

» Not all data is new
» We may rewrite a key-value pair to the same level multiple times

» How might we save extra writes?

» Fragmented LSM-Tree [rajusosp '17]: each level can contain up to F fragments

» Fragments can be appended to a level without merging with SSTables in that level
» Saves the work of doing a “merge” until there is enough work to justify the 1/Os

» Problems with fragments??

» Fragments can have overlapping key ranges, so may need to search through multiple fragments
» Need to be careful about returning newest values

> Again, we see a tension between locality and rewriting



LSM tree Problems’? |
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We wrlte a Iot of data durlng compaction

» Work “builds up”, and small writes might trigger a lot of I/0O for this pent-up work

» We often care about tail latency in real systems (the latency of the worst N% of operations)
» We often care albout performance predictability

> Amortization is great for throughput, but burstiness harms
Individual operations



LSM-tree Problems?
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We read a lot of data during searches

» We may need to search every level of our LSM-tree
» Binary search helps (SSTables are sorted), but still many [/Os to check all relevant SSTables in all levels

- How might we save extra reads?
» Bloom filters!
» By adding a Bloom filter, we only search if the data exists in that level (or false positive)

» Bloom filters for large data sets can fit into memory, so approximately 1+e I/Os per query
» Recent work dynamically “reallocates” bits to minimize false positives for a given memory budget

* Problems with Bloom filters?

» Do they help with range queries?
» Not really...



_Thought Questions
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How might you design:
« an LSM-tree for an SSD?

« an LSM-tree for an SMR drive?

» how would your designs be different”?
» Scale (SSD blocks are much smaller than SMR zones)
» Different concerns (e.g., wear leveling & endurance, parallelism)

We talked about storing the data with your index, or separating
your data from your index (clustered vs. declustered index)

» How might you design a system that separates keys from values?
» Wisckey [LurFasT 16]: Store keys in LSM-tree, values in a log

- What are the advantages/disadvantages”?

» Can fit most of the LSM-tree (keys) in memory -> 1 1/0O per search
» Need to GC your value log, just like LFS



