Log-Structured Merge
Trees

CSCI 333

How Should | Organize My Stuff
(Data)?

= = == — — - — = e e) e — — _

— ——— pr— — —

LY
@RS

4.»‘

How Shuldl Orgni My Data?

e _———— — ——

— B B

Different people approach the problem differently...

Jeremy.

T WANT

this room

[https://pbfcomics.com/comics/game-boy/]

https://pbfcomics.com/comics/game-boy/

pbfcomics.com

. — —_— S —_— . e —

Jeremy.

I WANT L
this room

CLEAN. ||| _

Logging

How Should | Organize My Data?

e e e e e e e ap—— ——

Indexing

How Should | Organize My Data?

: —— e e — e e — =
— = = —_—————
= —— — = _ —= — -

Logging Indexing

. Append at
Inserting esg i

Insert at leaf

(traverse root-
to-leaf path)

Scan through Locate in leaf

entire log

(traverse root-
to-leaf path)

Searching

How Should | Organize My Data?

V - —— - = —— - _ _
— = . = ———

Logging Indexing

Inserting O(1/B)

O(logsN)

™~ Assuming

B-tree
S
Searching O(N/B)

O(logsN)

Are We Forced to Choose’?

————a == —_—
— e _—— B = e —_—— —— — W — — — = - -

It appears we have a tradeoff between insertion and searching

« B-trees have

» fast searches: 0 (1oggN) Is the optimal search cost
» slow Inserts

* Logging has
» fast insertions
» slow searches: cannot get worse than exhaustive scan

Goal: Data Structural Search for Optimality

B-tree searches are optimal

B-tree updates are not

- We want a data structure with inserts that beat B-tree inserts without sacrificing
on gueries

> This Is the promise of write-optimization

Log Structured I\/Ierge Trees

- T— = -

Data structure proposed by O’Neil,Cheng, and Gawllck in 1996

» Uses write-optimized techniques to significantly speed up inserts
Hundreds of papers on LSM-trees (both innovating and using)

To get some intuition for the data structure, let’s break it down

Log-structured ¢« Merge -+ TIree

p——— = =

Log-Structured Merge Trees

— — o = e — — — T ——— ——

Log-structured

- All data is written sequentially, regardless of temporal ordering

Merge -+ Tree

e —— e —— e ————— = —

Log-Structured Merge Trees

7 — = = — - _
e ——— _ _ e — — —_—— —— e ——— p—— | — — R - - n

Log-structured

- All data is written sequentially, regardless of temporal ordering

Merge

» As data evolves, sequentially written runs of key-value pairs are merged

» Runs of data are indexed for efficient lookup
» Merges happen only after much new data is accumulated

Tree

Log-Structured Merge Trees

7 — = = — - _
. _ _ S S — _—_——— e e e —————— S = == - — N -

Log-structured

- All data is written sequentially, regardless of temporal ordering

Merge

» As data evolves, sequentially written runs of key-value pairs are merged

» Runs of data are indexed for efficient lookup
» Merges happen only after much new data is accumulated

Tree

» The hierarchy of key-value pair runs form a tree
» Searches start at the root, progress downwards

Log Structured Merge Trees

— _ = —— — = = =

— — —_— e —q—‘,—; pr—

Start W|th [0 Ne|I 96], then describe LevelDB

We will discuss:
» Compaction strategies
» Notable “tweaks” to the data structure
« Commonly cited drawbacks
» Potential applications

e ——— e ——— = = -—

[O Nell Cheng, Gawllck ’96]

e = - —
e — N = ——

= . — e = = I ——— — ——————

An LSM tree comprises a hierarchy of trees of increasing size

» All data inserted into in-memory tree (Co)
» Larger on disk trees (Ci-o) hold data that does not fit into memory

C1q tree Co tree

AN

I EE—

(D)isk Memory
Figure 2.1. Schematic picture of an LSM-tree of two components

[O Ne|I Cheng, awllck ’96]

_ e Em— e e ——— = - —
_ —_— == —— — = e
e » _ ——_—— —_— o —_— = — —qw — - .

When a tree exceeds |ts size limit, its data is merged and rewritten

» Higher level is always merged into next lower level (Ci merged with Ci.1)
» Merging always proceeds top down

Ck tree Co. C1 tree Co tree

merge merge merge
=N

S rs—
Disk Memory

Figure 3.1. An LSM-tree of K+1 components

—_— - == —— — - = =

_[ONeil, Cheng, Gawlick 96]

== . = — — =

» Recall mergesort from data structures
» We can efficiently merge two sorted structures

» When merging two levels, newer version key-value pair replaces older (GC)
» LSM-tree invariant: newest version of any key-value pair is version nearest to top of LSM-tree

C, tree Co tree
n
n
N .
u .
. . A
n a n } I
Disk Memory
A\
. u . .
n n n w A L n

Figure 2.2. Conceptual picture of rolling merge steps, with result written back to disk

LSM-trees are another dictionary data structure

e e = i

P — S —_— e —

Maintain a set of key-value pairs (kv pairs)

» Support the dictionary interface
» Lnsert(k, v) -insert a new kv pair, (possibly) replacing old value
» delete(k) - remove all values associated with key k
» (k,v) = query(k) - return latest value v associated with key k

» {(ka, vi), (kz, v2), .., (kij,vi)} = query(ki, ki) -return all key-value pairs in the range
from ki to ki

> Question: How do we implement each of these operations?

Insert(k)

5 — R =z — p— W«-‘m:‘ = = — S
— _ — = —_— —_—— = — —curw — = — - —

We msert the key value pair into the in-memory Ievel Co

» Don’t care about lower levels, as long as newest version is one closest to top
» But if an old version of kv-palir exists in the top level, we must replace it
» |f Co exceeds its size limit, compact (merge)

> Inserts are fast! Only touch Co.

— = —_— o —_—— e e e p——

Delete(k)

BTt — = — = e e ——— S —_— -

—_—— — - — - = ———— ——

We insert a tombstone into the in-memory level, Co
» A tombstone is a “logical delete” of all key-value pairs with key k

» When we merge a tom
» When we merge a tom

nstone wit

nstone wit

N a key-value palr, we delete the key-value pair

N a tombstone, just keep one

» When can we delete a tombstone?

» At the lowest level

» When merging a newer key-value pair with key k

> Deletes are fast! Only touch Co.

Query()

= _ — _ = = = - R ———

Begin our search in the in-memory Ievel Co

« Continue until:
» We find a key-value pair with key k
» We find a tombstone with key k
» We reach the lowest level and fail-to-find

> Searches traverse (worst case) every level in the LSM-tree

Query(k;, k)

_ _ _ _ - — - — - - - _
z _— = e e — _ e e e e e = F = —_———_
— _ ___ —_— = . - e — ————————— - = = = -

We must search every level, Co...Cn

» Return all keys in range, taking care to:

» Return newest (ki, vi) where Kj < ki < kjsuch that there are no tombstones with key k;jthat are newer
than (ki, vi)

> Range queries must scan every level in the LSM-tree (although not all
ranges in every level)

| evelDB

e ———— e ——— = — (7.'¢- = — = — — e ——— e ——— - D
Bt I — —_—— = i —— = = ES = - —=

Google’s Open Source LSM-tree-ish KV-store

Some Definitions

e ————— e ———— e —— _
. _ R e — S _— e = — —————— e — = = s = .

LevelDB consists of a hierarchy of SSTables

» An SSTable is a sorted set of key-value pairs (Sorted Strings Table)
» Typical SSTable size is 2MiB

The growth factor describes how the size of each level scales
» Let F be the growth factor (fanout)

» Let M be the size of the first level (e.g., 10MiB)
* Then the ith level, Ci has size FiM

The spine stores metadata about each level

- {keyi, offseti} for a all SSTables in a level (plus other metadata TBD)

» Spine cached for fast searches of a given level
p (if too big, a B-tree can be used to hold the spine for optimal searches)

LeveIDB Example

— = = -
_— ——— = _ p——— — 5 = —=—
—_—— - — B -—'—‘,—; —_ =

In-memory —>
SSTable

In-memory
SSTable

Operation Log Lo: 8 MiB

o W, \ J
[N ()
\ J \L J
(- \N(\N(\N()
- J J J w,
(- NN (NN (NN (N\ (N\ (N\ (N\ ()

Le: 1 TIB

LeveIDB Example

—_— .__7,.}—“— — —_— _ = _———
= — — -

In-memory In-memory
SSTable SSTable

Operation Log LO: 8 MiB
_ _ \ ,
Write operation to log L1: 10 MIB
(immediate persistence) —
é NN (NN (NN ()
° Update in-memory SSTable Lo: 100 MIB
o J J J ,

e (Eventually) promote full SSTable : : : :
and initialize new empty SSTable aYa Ve Ve Ve Yo N Va N

Le: 1 TIB

I\/Ierge/write INn-memory \ J J J J J J J y
SSTables to Lo

e ——

Compaction

—— . — =

— — e e g

How do we manage the levels of our LSM?

» |deal data management strategy would:

» Write all data sequentially for fast inserts
ata sorted for fast searches

4
4
4

Kee
Mini
Mini

0 all o
mize t

mize t

ne NUIM
ne NUIM

oer Ol

evels we must search per query (low reac

e e —

— —_———

amplification)

Oer O

" times we write each key-value pair (low w

» Good luck making that work!
» ... but let’s talk about some common approaches

rite amplification)

erte optlmlzed Data Structures

e — ——
e i A e = :

Option 1 Slze tlered

« Each “tier” is a collection SSTables with similar sizes

» When we compact, we merge some number of SSTables with the same size to
create an SSTable in the next tier

]~ e
] _ﬁ Merge

H

Write-optimized Data Structures

P — —_— — e ———————— —

Option 2: Level-tiered
» All SSTables are fixed size
» Each level is a collection SSTables with non-overlapping key ranges

» To compact, pick SSTable(s) from Li and merge them with SSTables in Li.1
» Rewrite merged SSTables into Lit1 (redistributing key ranges if necessary)
» Possibly continue (cascading merge) of Li+1 to Liso

» Several ways to choose (e.g., round-robin or ChooseBest)
» Possibly add invariants to our LSM to control merging (e.g., an SSTable at Liy1 can cover at most X SSTables at Lis1)

Merge SSTable in L with all SSTables in Liz1that have overlapping key ranges,
possibly redistributing key ranges among newly written SSTables.

LSM tree Problems’?

- _ —_— == — Eaae——— — 5 = ——
e _ _ _——_ —_— —_— —_—— = — —q—‘p* — -

We wrlte a Iot of data durlng compaction

» Not all data is new
» We may rewrite a key-value pair to the same level multiple times

» How might we save extra writes?

» VI-trees [snetty FasT 18]: If @ long run of kv-pairs would be rewritten unchanged to the next level, instead
write a pointer

* Problems with VT1-trees?

» Fragmentation
» Scanning a level might mean jumping up and down the tree, following pointers

> There iIs a tension between locality and rewriting

LSM-tree Problems?

- —_— S — == = P — = ——
— S ——— — == o — e = - . ————— e —— = =
e _ e —_— —

We write a lot of data during compaction

» Not all data is new
» We may rewrite a key-value pair to the same level multiple times

» How might we save extra writes?

» Fragmented LSM-Tree [rajusosp '17]: each level can contain up to F fragments

» Fragments can be appended to a level without merging with SSTables in that level
» Saves the work of doing a “merge” until there is enough work to justify the 1/Os

» Problems with fragments??

» Fragments can have overlapping key ranges, so may need to search through multiple fragments
» Need to be careful about returning newest values

> Again, we see a tension between locality and rewriting

LSM tree Problems’? |

= —_— — == Eaae——— 3 = ——
— _ _ _ _—— —_— — — —-—r—‘p* — = - -

We wrlte a Iot of data durlng compaction

» Work “builds up”, and small writes might trigger a lot of I/0O for this pent-up work

» We often care about tail latency in real systems (the latency of the worst N% of operations)
» We often care albout performance predictability

> Amortization is great for throughput, but burstiness harms
Individual operations

LSM-tree Problems?

e —— e —— e ————— —_—

. [—— = e . e e e

We read a lot of data during searches

» We may need to search every level of our LSM-tree
» Binary search helps (SSTables are sorted), but still many [/Os to check all relevant SSTables in all levels

- How might we save extra reads?
» Bloom filters!
» By adding a Bloom filter, we only search if the data exists in that level (or false positive)

» Bloom filters for large data sets can fit into memory, so approximately 1+e I/Os per query
» Recent work dynamically “reallocates” bits to minimize false positives for a given memory budget

* Problems with Bloom filters?

» Do they help with range queries?
» Not really...

_Thought Questions

A - = = — - _ N _
. » _ — P — B = —_———— e e e ———— e — = — = — e - - —

How might you design:
« an LSM-tree for an SSD?

« an LSM-tree for an SMR drive?

» how would your designs be different”?
» Scale (SSD blocks are much smaller than SMR zones)
» Different concerns (e.g., wear leveling & endurance, parallelism)

We talked about storing the data with your index, or separating
your data from your index (clustered vs. declustered index)

» How might you design a system that separates keys from values?
» Wisckey [LurFasT 16]: Store keys in LSM-tree, values in a log

- What are the advantages/disadvantages”?

» Can fit most of the LSM-tree (keys) in memory -> 1 1/0O per search
» Need to GC your value log, just like LFS

