Google File System

CSCI 333
Spring 2020

BetrFS

* Full-path-indexing vs. inode-based designs

- Mapping VFS operations to Be-tree operations
 Evaluating a system fairly

e _

Google file system
« Who?
« Why?
« How?

When Head

Look at authors

Look at institution

Look at past/future research
Look at publication venue

These things will give you insight into the
* motivations
* perspectives
* agendas
* resources

Think: Are there things that they are promoting? Hiding?
Building towards?

Suppose you want to run a workload that does
distributed batch processing (e.g., | have a bunch
of data and | want to compute over various
independent subsets of that data in parallel).

« What bottlenecks would | run into if | ran this workload on
NFS?

Suppose | instead store my data as a bunch of files
on different nodes in my “private cloud” of servers.

- What advantages do | get over NFS?

- What types of events/problems do | need to design my s
system to handle?

GFS Design Targets/Constraints

Large files (and millions of them)

Frequent component failures

Append-only writes dominate the updates

Large sequential reads

Prioritize high sustained bandwidth over latency

No need to be strictly POSIX compliant, but must support:

« Standard ops:
» read, write, open, close, create, delete

« Non-standard ops:
» Snapshot: a copy of a file or directory tree at low cost

» Record append: allows multiple clients to append to the same file concurrently,
guaranteeing atomicity of each append

Files are divided into fixed-sized chunks
Clients write files to chunk servers

A single master server coordinates the system, but
the “real work” happens locally at individual nodes

A single master multiple chunk servers

Files are composed of 64MiB chunks
« Chunks are represented as local files on chunk server FSes

Chunks are replicated (3 copies by default)
FS interface provided by a client library, not VFS

« Why?
=

Client

GFS
Library

CS1

Client

GFS
Library

Master maintains all FS metadata
* Namespace
« Access control
* File -> chunk mappings
« Chunk locations

Master controls all system-wide activities
» Garbage collection
* Lease management
- Chunk migration (balancing)

« Heartbeat messages

» Periodic master <-> chunk server messages to give instructions /
collect state

Client

GFS

Client

GFS
Library

Client

GFS
Library

Client

GFS
GFS Library
Library

Client

_Avoiding the Master Bottleneck

Don’t want system bottlenecked the master
* ... SO we want to minimize master involvement. How?

Clients

» Clients get all metadata from the master, but interact with
chunk servers directly

» Clients do not cache data -> no cache coherency issues

Chunk Servers
 Heartbeats and leases

Client

GFS

Client

GFS
Library

Client

GFS
Library

Client

GFS
GFS Library
Library

Client

— - _ _ —

64 MiB, but stored as a regular file

What “optimizations” for target environment?

» Lazy space allocation
» only extended when needed, so no internal fragmentation

» Big chunks mean that even for large files, very few chunk

iIndices must be cached by clients
» However “hot spots” can show up for popular chunks

Remember, all chunks are regular files, so local
FS’s optimizations and drawbacks apply

_Managing

Master keeps several types of metadata
(1) System filenames and chunk namespaces
(2) Index w/ {file -> {chunks}} (like “recipes” in dedup)
(3) Locations of chunk replicas

How?
* (1) and (2) kept in operation log persistently

- (3) queried by master at startup, maintained with heartbeat
messages

The Operation Log keeps the only persistent
record of metadata

* Files and chunks are versioned using the timestamps in the
operation log

* The operation log is replicated on multiple machines

» GFS does not respond to a client operation until the operation log entry
Is flushed locally and remotely

« GFS can recover file system state by replaying the log

» Takes periodic checkpoints to keep the log small
» Flush all pending operations
» Clear the consistent log prefix

Metadata is handled exclusively by the master, so
namespace mutations are atomic (e.g., file create)

A file region is consistent when
- no matter which replica a client reads from, same data returned

File data mutations can be writes or record appends

- On record append, data is appended atomically and at /east
once, at an offset of GFS’s choosing

 To deal with padding and duplicates, applications should build
in checksums or another method of writing self-validating data

GFS applies mutations to chunks in the same order at
all replicas, and uses version numbers to detect stale
chunks

For a given chunk, master grants a lease to one of
the replicas

This primary replica chooses the mutation ordering
- All other replicas perform mutations in that order

This delegation of work keeps some of the
management overhead off of the master

Snapshot goal: create a copy of a file or directory
tree at low cost

Snapshot operation steps:

» Master revokes all outstanding leases on all chunks that
comprise the “to-be-snapshotted” files

« Master adds snapshot operation to operation log

« Master duplicates the metadata
» Reference count is now >1 for all chunks in to-be-snapshotted files

When a new operation is requested, reference
count >1 so copy-on-write techniques are used

_Garbage

Space is not reclaimed immediately
 Deleted files are renamed to a hidden name that includes a
deletion timestamp

 During regular FS scan, reclaim space from deleted files

older than some threshold (e.g., 3 days)
» Delayed reclamation prevents accidental deletion

Stale replicas are also deleted during garbage
collection

« Areplica is stale if its version number is not up-to-date with
current lease’s version number

Tradeoff of generality and performance
- Don’t need POSIX, can rethink with application in mind

Don’t hide failures from the application

» Design sensible abstractions to tolerate common failure
modes

+ Give applications easy-to-reason-about models

Think back to LFS motivations
 What trends motivated LFS? Still true?

- Compare to motivation for GFS.
» How are they different? The same”?

