CSCI 136
Data Structures &
Advanced Programming

Lecture 30
Spring 2018

Instructors: Bil —— Jon

Last Time

* Introduction To Graphs
e Definitions and Properties: Undirected Graphs
e Small Proofs

e Reachability

Today’s Outline

* Graphs in Structure5
* Graph Interface

e Using the Graph interface to implement graph
algorithms:
 BFS + DFS

e Lab 10 Preview: Graph C oring to schedule
exams

Graphs in Structure>

* Implementation involves a number of design
decisions, depending on intended uses

* What kinds of graphs will be available?

 Undirected, directed, mixed
* What underlying data structures will be used!?
* What functionality will be provided!?
* What aspects will be public/protected/private

* We'll focus on popular implementations for
undirected and directed graphs (separately)

Graphs in structure5

* We want to store information at vertices and
at edges, but we favor vertices

* Let V and E represent the types of information
neld by vertices and edges respectively

* Interface Graph<V,E> extends Structure<V>

* Vertices are the building blocks; edges depend on them

* Type V holds a label for a (hidden) vertex

* Type E holds a label for an (available) edge

* Label: Application-specific data for a vertex/edge

Graphs in structure5

* So, the methods described in the Structure
interface are about vertices (but also impact
edges: e.g., clear())

* We'll want to add a number of similar
methods to provide information about edges,
and the graph itself

e Ultimately the Structure interface is a subset
of the total functionality in the graph classes

Recall: Desired Functionality

* What are the basic operations we need in
order to describe algorithms on graphs?

e Given vertices u and v: are they adjacent?

* Given vertex v and edge e, are they incident!?

e Given an edge e, get its incident vertices (ends)

* How many vertices are adjacent to v! (deg(v))

* The vertices adjacent to v are called its neighbors

* Get a list of the neighbors of v (or the edges
incident with v)

Graph Interface Methods

void add(V vlabel), V remove(V vlLabel)

e Add/remove vertex to graph
void addEdge(V vlabell, V vlLabel2, E edgelabel),
E removeEdge(V vlLabell, V vLabel2)

* Add/remove edge between vLabell and vLabel2

boolean containsEdge(V vLabell, V vLabel2)

e Returns true iff there is an edge between vlLabell and vLabel2
Edge<V,E> getEdge(V vlLabell, V vLabel2)

e Returns edge between vlLabell and vLabel2
void clear()

* Remove all nodes (and edges) from graph

Graph Interface Methods

boolean visit(V vlLabel)
e Mark vertex as “visited” and return previous value of visited flag
boolean visitEdge(Edge<V,E> e)
e Mark edge as “visited”
boolean isVisited(V vLabel), boolean isVisitedEdge(Edge<V,E> e)
e Returns true iff vertex/edge has been visited
Iterator<V> neighbors(V vlLabel)
* Get iterator for all neighbors of vLabel
* For directed graphs, out-edges only
Iterator<V> iterator()
e Get vertex iterator
void reset()
* Remove visited flags for all nodes/edges

Representing Graphs

* Two standard approaches

e Option |: Array-based (directed and undirected)
e Option 2: List-based (directed and undirected)
* We'll look at both

* Array-based graphs store the edge information in a 2-
dimensional array indexed by the vertices

 List-based graphs store the edge information in a (I-
dimensional) array of lists

* The array is indexed by the vertices

e Each array element is a list of edges incident with that vertex

Example Graph Representations:

Lists and Matrices

-

; L
—|—|o|lo|—-|o|lo]|o HEEN]
OUO|l=-|—=]lololo|l—-|lol o olloaflo|fw O | w||w
Tslel=l=lslsl=lo 1ttt 111
w|lo|lo|lo|—|o|lo|o| - Clloll=llollzllalla]|]=]
0 s 0
YlI-iolelzlelzlelel E====cl=<
i ol I ol el el O N O O N
<|lo|l—-|—-|o|lo|lo|—-|-—-

<ol Q0O |w|lw|O|I <|lo|luvloa|lwl|loe|lol|x

Graph Classes in structure5

Interface Abstract Class

Structure

Graph

GraphMatrix

AN

GraphMatrixDirected

GraphMatrixUndirected

Class

AbstractStructure

A

GraphlList

GraphlListDirected

Vertex

RN

GraphMatrixVertex GraphListVertex

Edge

GraphListUndirected

Edge Class

* Graph edges are defined in their own public class

(vertices are hidden: referenced only by their label)

e Edge<V,E>(V vLabell, V vLabel2,
E label, boolean directed)

e Construct a (possibly directed) edge between two labeled
vertices (vLabell - vLabel?2)

e vLabell : here; vlLabel2 : there

e Useful Edge methods (getters and setters):

label(), here(), there()
setLabel (), i1sVisited(), isDirected()

Reachability: Breadth-First Search

BFS(G, v) /I Do a breadth-first search of G starting at v
/] pre: all vertices are marked as unvisited
/l post: return number of visited vertices
count <0;
Create empty queue Q;
add v to Q, mark v as visited, add ‘v’ to count
While Q isn’t empty

current €Q.dequeue();

for each unvisited neighbor u of current :

add u to Q, mark u as visited, add ‘u’ to count

return count;

How does this translate to code!?

Breadth-First Search

int BFS(Graph<V,E> g, V src) {
int count = 0; Queue<V> todo = new QueueList<V>();
todo.enqueue(src);
g.visit(src); count++;
while (!todo.isEmpty()) {
V vertex = todo.dequeue();
Iterator<V> neighbors = g.neighbors(vertex);
while (neighbors.hasNext()) {
V next = neighbors.next();
if (!g.isVisited(next)) {
todo.enqueue (next);
g.visit(next); count++;

}

return count;

Breadth-First Search of Edges

int BFS(Graph<V,E> g, V src) {
int count = 0; Queue<V> todo = new QueueList<V>();
todo.enqueue(src);
g.visit(src); count++;
while (!todo.isEmpty()) {
V vertex = todo.dequeue();
Iterator<v> neighbors = g.neighbors(vertex);
while (neighbors.hasNext()) {
V next = neighbors.next();
if (!g.isVisitedEdge(vertex, next))
g.visitEdge(vertex, next);
if (!g.isVisited(next)) {
todo.enqueue (next);
g.visit(next); count++;

}

return count;

Recursive Depth-First Search

/| Before first call to DFS, set all vertices to unvisited
/[Then call DFS(G,v)
DFS(G, v)
Mark v as visited; count=1;
for each unvisited neighbor u of v:
count += DFS(G,u);
return count;

How does this translate to code!?

Recursive Depth-First Search

int depthFirstSearch(Graph<V,E> g, V src) {
g.visit(src);

int count = 1;
Iterator<V> neighbors = g.neighbors(src);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisited(next))
count += depthFirstSearch(g, next);

}

return count;

Lab |0 Overview:
Graph Algorithms using structure5

Greedy Algorithms

* A greedy algorithm attempts to find a globally optimum

solution to a problem by making locally optimum
(greedy) choices

* Example: Walking in Manhattan
e Example: Graph Coloring
* A (proper) coloring of a graph G=(V,E) is an

assignment of a value (color) to each vertex so that
adjacent vertices get different values (colors)

e Typically one strives to minimize the number of colors
used

20

Graph Coloring Example

L0 ee”

21

Greedy Coloring : Math

Here’s a greedy coloring algorithm

Build a collection C ={C,, ..., C,} of sets of vertices
i =0; C;={} Il empty set

while G is has more vertices

for each vertex uin G
if u is not adjacent to any vertex of C,

remove U from G and add u to C,
add C;to C
[++:
Return C as the coloring

22

Greedy Coloring : CS

Here’s a greedy coloring algorithm
Create a structure C to hold a collection of lists

while G is not empty
pick a vertex v in G; create an empty list L; add vto L

foreachvertex u#vin G
If uis not adjacent to any vertex of L

add uto L
remove all vertices of L from G
addLto C
Return C as the coloring

23

Greedy Coloring

24

Greedy Coloring

Some observations

* Each list (color class) L is a set of vertices, no two of
which are adjacent (an independent set)

* Each color class is maximal: cannot be made any larger
e The hope is that this results in fewer colors being needed
e But the solution is not always optimum!
* This is a very hard problem
* The coloring problem is the same as finding a partition of
the vertex set into independent sets

* Partition means union of disjoint sets

25

Lab 10 : Exam Scheduling

Find a schedule (set of time slots) for exams so that

* No student has two exams in the same slot

* Every course is in a slot

 The number of slots is as small as possible

This is just the graph coloring problem in disguise!

* Each course is a vertex

* Two vertices are adjacent if the courses share students

* A slot must be an independent set of vertices (that is, a
color class)

26

Lab |10 Notes: Using Graphs

e Create a new graph in structure5
e GraphListDirected, GraphListUndirected,
e GraphMatrixDirected, GraphMatrixUndirected

e Graph<V,E> conflictGraph = new GraphListUndirected<V,E>();

27

Lab 10 : Useful Graph Methods

void add(V label)
* add vertex to graph

volid addEdge(V vtxl, V vtx2, E label)
* add edge between vtx| and vtx2
Iterator<V> neighbors(V vtxl)

* Get iterator for all neighbors to vtxl|
boolean isEmpty()

e Returns true iff graph is empty
Iterator<V> iterator()

* Get vertex iterator

V remove(V label)

e Remove a vertex from the graph

E removeEdge(V vLabell, V vLabel2)
 Remove an edge from graph

28

