CSCI 136
Data Structures &
Advanced Programming

Lecture 21
Spring 2018
Profs Bill & Jon



Administrative Details

e Lab 7 posted
 Two towers
e Use iterators to solve a challenging problem

* Bitwise operations help



Last Time

* Trees!
e General Idea and Uses
* Terminology

* Some examples
* Expression trees



Today

e The structure5 BinaryTree class
e implementation details

e Some quick proofs and theory
* Traversing trees



Branching Out: Trees

e A tree is a data structure where elements can
have multiple successors (called children)

* But still only one predecessor (called parent)



Tree Features

* Trees express hierarchical relationships

 Directed: root to leaf
* Root at the top
e | eaf at the bottom

* |nterior nodes in middle

* Parent, children, ancestors, descendants, siblings

* Degree (of node): number of children of node

* Degree (of tree): maximum degree (across all nodes)
e Depth of node: number of edges from root to node

e Height: maximum depth (across all nodes)



Introducing Binary Trees

Degree of each node <=2

Recursively defined. A tree can either be:
* Empty

* Root with left and right subtrees

Binary Tree: No “inner” node class like SLL;
single BinaryTree class does it all

(Not part of the structure inheritance
hierarchy)



Implementing structure> BinaryTree

|

* BinaryTree<E> class

parent
* Instance variables value
e BinaryTree: parent, left, right left |right

 E: value / \

* left and right are never null
* If no child, they point to an

“empty” tree null
* Empty tree T has value null, h'nu”h'
parent null, left = right =T this | this
e Only empty tree nodes have EMPTY BT

null value



Implementing BinaryTree

* BinaryTree class

* |nstance variables

*

N

4

* BT parent, BT left, BT right, E value

null

“*”

left [right

7

parent
“4”

left |right
v A

EMPTY EMPTY

N

parent
“2”
left [right
v A
EMPTY EMPTY

2



A small tree

parent

value

/

left |right
A

N\

parent

value

parent — nul|
value
!/////Ie& tht\\\\\
parent parent
value value
left |righ Ie? right
Parent EM PTY
value
left |right
y \
EMPTY EMPTY

EMPTY EMPTY

EMPTY != null!

left |right

EMPTY

/\

EMPTY



Implementing BinaryTree

e Many (!) methods: See BinaryTree javadoc page

o All “left” methods have equivalent “right” methods

e public BinaryTree()
* /] generates an empty node (EMPTY)
e /] parent and value are null, left=right=this
e public BinaryTree(E value)
* /] generates a tree with a non-null value and two empty (EMPTY) subtrees
e public BinaryTree(E value, BinaryTree<E> left, BinaryTree<E> right)
e /[ returns a tree with a non-null value and two subtrees
e public void setLeft(Binary Tree<E> newLleft)
* /[ sets left subtree to newLeft
e /] re-parents newlLeft by calling newLeft.setParent(this)
e protected void setParent(BinaryTree<E> newParent)
* /[ sets parent subtree to newParent
e /I called from setlLeft and setRight to keep all “links” consistent



Implementing BinaryTree

Methods:

public BinaryTree<E> left()

* /[ returns left subtree
public BinaryTree<E> parent()

* /] post: returns reference to parent node, or null
public boolean isLeftChild()

e /] returns true if this is a left child of parent
public E value()

* /[ returns value associated with this node
public void setValue(E value)

* /[ sets the value associated with this node

public int size()

* // returns number of (non-empty) nodes in tree
public int height()

* /l returns height of tree rooted at this node
But where’s “remove” or “add”?!?!



BT Questions/Proofs

* Prove
* The number of nodes at depth n is at most 2".

* The number of nodes in tree of height n is at
most 20+1-1,

* A tree with n nodes has exactly n-| edges



BT Questions/Proofs

Prove: Number of nodes at depth d=0 is at most 2¢.

|dea: Induction on depth d of nodes of tree

Base case: d=0: | node. | =2°/

Induction Hyp.: For some d = 0, there are at most 2¢
nodes at depth d.

Induction Step: Consider depth d+1. It has at most 2
nodes for every node at depth d.

Therefore it has at most 2*29 = 29+l nhodesv



BT Questions/Proofs

Prove that any tree of n=1 nodes has n-1 edges
|dea: Induction on number of nodes
Base case:n = 1. There are no edgesv

Induction Hyp: Assume that, for some n=1, every tree
of n nodes has exactly n-1 edges.

Induction Step: Let T have n+1 nodes. Show it has
exactly n edges.

* Remove a leaf v (and its single edge) from T
* Now T has n nodes, so it has n-| edges

* Now add v (and its single edge) back, giving n+1
nodes and n edges.



Representing Knowledge

Trees can be used to represent knowledge

* Example: InfiniteQuestions game

We often call these trees decision trees
e Leaf: object

* Internal node: question to distinguish objects
Move down decision tree until we reach a leaf node

Check to see if the leaf is correct

* If not, add another question, make new and old objects
children

Let’s play....



Building Decision Trees

Gather/obtain data

Analyze data

* Make greedy choices: Find good questions that
divide data into halves (or as close as possible)

Construct tree with shortest height
In general this is a *hard™ problem!

Example P

DS OA




Representing Arbitrary Trees

What if nodes can have many children?

e Example: Game trees

Replace left/right node references with a list of
children (Vector, SLL, etc)

 Allows getting “it"” child

Should provide method for getting degree of a
node

Degree 0  Empty list  No children  Leaf

We will use this idea in the Lexicon Lab



Tree Traversals

* In linear structures, there are only a few basic
ways to traverse the data structure

e Start at one end and visit each element
o Start at the other end and visit each element

* How do we traverse binary trees!?

e (At least) four reasonable mechanisms



Tree Traversals

Lucas

/N

Jacob Nambi

/NN

In-order: “left, node, right” Aria Kelsie Tongyu
Aria, Jacob, Kelsie, Lucas, Nambi, Tongyu

Pre-order: “node, left, right”
Lucas, Jacob, Aria, Kelsie, Nambi, Tongyu

Post-order: “left, right, node”
Aria, Kelsie, Jacob, Tongyu, Nambi, Lucas,

Level-order: visit all nodes at depth i before depth i+|

Lucas, Jacob, Nambi, Aria, Kelsie, Tongyu



.
Tree Traversals ./ \7
* Pre-order 2/ \3

* Each node is visited before any children. Visit
node, then each node in left subtree, then each
node in right subtree. (node, left, right)

o +¥237

* |n-order

e Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.
(left, node, right)

o 2%3+7

(“pseudocode’)



/+\
* 7
/N
2 3

Tree Traversals

e Post-order

e Each node is visited after its children are visited.
Visit all nodes in left subtree, then all nodes in
right subtree, then node itself. (left, right, node)

o 23%7+
* Level-order (not obviously recursive!)

e All nodes of level i are visited before nodes of
level i+ 1. (visit nodes left to right on each level)

o +¥723

(“pseudocode’)



Tree Traversals

public void preOrder (BinaryTree t) {
if(t.isEmpty()) return;
touch(t); // some method

+
preOrder(t.left()); // \\
preOrder(t.right()); ¥ 7

} /N
23

For in-order and post-order: just move touch(t)!

But what about level-order???



Level-Order Traversal

Green

/\

Blue Violet

T

Orange Yellow

N

Indigo Red



Level-Order Traversal

T

Blue Violet

T

Orange Yellow

N

Indigo Red



Level-Order Traversal

Green

/\

Blue Violet
/\

Orange Yellow

N

Indigo Red




Level-Order Traversal

Green

/\

Blue _Violet
T

Orange Yellow

N

Indigo Red

-

GB



Level-Order Traversal

Green

/\

Blue Violet

T
Orange Yellow

N

Indigo Red

GBV



Level-Order Traversal




Level-Order Traversal

Green

/\

Blue Violet

T

Orange Yellow

Indigo Red

GBVOY



Level-Order Traversal

Green

/\

Blue Violet

T

Orange Yellow

N
Indigo

GBVOYI



Level-Order Traversal

Green

/\

Blue Violet

T

Orange Yellow

N

Indigo Red

GBVOYIR



Level-Order Traversal

Green

/\

Blue Violet

T

Orange Yellow

N

Indigo Red



Level-Order Traversal

/\
Blue Violet 1
/\ Green
Orange Yellow ] 1
/\ todo queue

Indigo Red



Level-Order Traversal

Green 1
/\ .
Violet
Blue Violet o
Py Blue
Orange Yellow 1
/\ todo queue
Indigo Red



Level-Order Traversal

Green
/\
Blue 1
PNy Violet
Orange Yellow 1
/\ todo queue
Indigo Red

GB



Level-Order Traversal

Green 1
/\
. Yellow
Blue Violet
Py Orange
Orange Yellow 1
/\ todo queue
Indigo Red

GBV



Level-Order Traversal

Green

/\

Blue Violet

Orange

todo queue

GBVO



Level-Order Traversal

Green 1
/\
Red
Blue Violet =
Py Indigo
Orange Yellow 1
/\ todo queue
Indigo  Red

GBVOY



Level-Order Traversal

Green
/\
Blue Violet l
Py Red
Orange Yellow 1
/\ todo queue
Indigo GED»

GBVOYI



Level-Order Traversal

Green
/\
Blue Violet
/\ L
Orange Yellow 1
/\ todo queue
Indigo  Red

GBVOYIR



Level-Order Tree Traversal

public static <E> void levelOrder (BinaryTree<E> t) {

if (t.isEmpty()) return;

// The queue holds nodes for in-order processing
Queue<BinaryTree<E>> q = new QueuelList<BinaryTree<E>>();
g.enqueue(t); // put root of tree in queue

while(!q.isEmpty()) {
BinaryTree<E> next = g.dequeue();
touch(next);
if(!next.left().isEmpty()) g.enqueue( next.left() );
if(!next.right().1isEmpty()) g.enqueue(next.right());



