
[TAP:IVHZO] Bit-shifting

Given 

int x =12 >> 3;

int y = x << 1;

• What is y?

A. 1

B. 2

C. 10

D. None of the above

E. Whatever



• Tree 

• Tree

• Binary Tree

Today’s Outline



Introducing Trees

• We have been studying structures with a 

linear organization, i.e. each node has at 

most 1 successor.

• But you may want to allow more than 1 

successor!



Tree

• A tree is a data structure where nodes can 

have:

• one predecessor (called parent)

• multiple successors (called children)



Tree



https://berkshireonstage.com/2016/07/08/get-a-sneak-peek-at-mass-mocas-phase-iii-expansion-its-a-game-changer/rs32047_joe_4-copy-copy-lpr-2-838x627/

Tree Logic (Natalie Jereminjenko) at Mass MoCA



Tree Features

• Degree (of node): number of children of node

• Degree (of tree): maximum degree (across all nodes)

• Depth of node: number of edges from root to node

• Height of tree: maximum depth (across all nodes)



Tree examples



William I

Robert William II Adela Henry I

Stephen William Matilda

Henry II

House of Normandy, Battle of Hastings, 1066





~jannen

www research papers

... ...
index.html cs136

lectures.html labs.html

cs102T



X

X
X

... ...

X

O O

X
X X

X X

O O O

O
... ... ...

X

... ... ... ... ... ...
X O

X O



• Tree 

• Tree

• Binary Tree

Today’s Outline



Binary Trees

• Binary Tree: Tree with Degree of each node <= 

2

• Recursively defined. A tree can either be:

• Empty

• Root with left and right subtrees



Full vs. Complete

• Full tree – A full 

binary tree of height h 

has leaves only on 

level h, and each 

internal node has 

exactly 2 children.

• Complete tree – A 

complete binary tree of 

height h is full to height 

h-1 and has all leaves at 

level h in leftmost 

locations.

All full trees are complete, but not all complete trees are full! 



+

*

4 2

3

4 * 2 + 3

BinaryTree<String> fourTimesTwo = 

new BinaryTree<String>(“*”, 
new BinaryTree<String>(“4”), 
new BinaryTree<String>(“2”));

BinaryTree<String> fourTimesTwoPlusThree =

new BinaryTree<String>(“+”,
fourTimesTwo, 

new BinaryTree<String>(“3”));

Example: Expression Trees

Build using constructor
new BinaryTree<E>(value, leftSubTree, rightSubTree)



Evaluating Expression Trees

• Starting at the root,

• Evaluate left subree

• Evaluate right subtree

• Perform operation (+, -, *, /) with left and right



int evaluate(BinaryTree<String> tree) {

}


