
CSCI 136
Data Structures &

Advanced Programming

Lecture 20
Spring 2018

Profs Bill & Jon

Last Time

• Iterators Recap
• Iterating over Iterators

2

Today

• Trees!
• General Idea and Uses
• Terminology
• Some examples

• Expression trees

• Introduction to structure5 BinaryTree class

• BinaryTree class implementation details
• Proofs and theory
• Traversing trees

3

Introducing Trees

• Our structures have had a linear organization
• Stacks, queues
• Even ordered vectors, ordered lists, arrays,

vectors, lists are visualized linearly

• By linear we essentially mean that each
element has at most one successor and at
most one predecessor…

Branching Out: Trees

• A tree is a data structure where elements can
have multiple successors (called children)

• But still only one predecessor (called parent)

Root

Leaves

https://berkshireonstage.com/2016/07/08/get-a-sneak-peek-at-mass-mocas-phase-iii-expansion-its-a-game-changer/rs32047_joe_4-copy-copy-lpr-2-838x627/

Tree Logic (Natalie Jereminjenko) at Mass MoCA

“Computer Tree”

William I

Robert William II Adela Henry I

Stephen William Matilda

Henry II

House of Normandy, Battle of Hastings, 1066

Tree Features

• Trees express hierarchical relationships
• Directed: root to leaf

• Root at the top
• Leaf at the bottom
• Interior nodes in middle
• Parent, children, ancestors, descendants, siblings
• Degree (of node): number of children of node
• Degree (of tree): maximum degree (across all nodes)
• Depth of node: number of edges from root to node
• Height: maximum depth (across all nodes)

Other Trees

• Phylogenetic tree
• Directories of files
• Game trees
• Build a tree
• Search it for moves with high likelihood of

winning

• Expression trees

~jannen

www research papers

... ...
index.html cs136

lectures.html labs.html

cs102T

X
X

X
... ...

X

O O

X
X X

X X

O O O

O
...

X

...
X O

X O

+

*

4 2

3
4 * 2 + 3

Expression Trees

*

4 2

3
-

10 2

4

+

+ /

(4 * 2 + 3) + ((10 – 2)/ 4)

Introducing Binary Trees

• Degree of each node <= 2
• Recursively defined. A tree can either be:
• Empty
• Root with left and right subtrees

• SLL: Recursive nature was captured by nodes
(Node<E>) on inside

• Binary Tree: No “inner” node class; single
BinaryTree class does it all

• (Not part of the structure hierarchy)

Binary Trees for (Math) Expressions

• General strategy
• Make a binary tree (BT) for each leaf node
• Move from bottom to top, creating BTs
• Eventually reach the root

• Call “evaluate” on final BT

• Example
• How do we make a binary expression tree for: (4*2)+3

• Leaves are numbers
• Non-leaf nodes are operators

– We will apply each operator to its children (ex: left + right)

+

*

4 2

3
4 * 2 + 3

BinaryTree<String> fourTimesTwo =
new BinaryTree<String>(�*�,
new BinaryTree<String>(�4�),
new BinaryTree<String>(�2�));

BinaryTree<String> fourTimesTwoPlusThree =
new BinaryTree<String>(�+�,
fourTimesTwo,
new BinaryTree<String>(�3�));

Example: Expression Trees

Build using constructor
new BinaryTree<E>(value, leftSubTree, rightSubTree)

Evaluating Expression Trees

• Starting at the root,
• Evaluate left subree
• Evaluate right subtree
• Perform operation (+, -, *, /) with left and right

int evaluate(BinaryTree<String> expr) {
if (expr.height() == 0) {

return Integer.parseInt(expr.value());
} else {

int left = evaluate(expr.left());
int right = evaluate(expr.right());
String op = expr.value();
switch (op) {

case “+” : return left + right;
case “-” : return left - right;
case “*” : return left * right;
case “/” : return left / right;

}
Assert.fail(“Bad op”);
return -1;

}
}

More Tree Terminology

• Some of the terminology is non-standard
• We will try to be consistent in this class, but…
• We want to be able to communicate to our friends

outside of Williams CS too!

• I hate jargon, but having a language for our data
structures gives us the ability to express ideas
and describe algorithms

Full vs. Complete (non-standard!)

• Full tree – A full binary
tree of height h has
leaves only on level h,
and each internal node
has exactly 2 children.

• Complete tree – A
complete binary tree of
height h is full to height h-1
and has all leaves at level h
in leftmost locations.

All full trees are complete, but not all complete trees are full!

