CSCI 136
Data Structures &
Advanced Programming

Lecture 20
Spring 2018
Profs Bill & Jon

Last Time

* |terators Recap
* |terating over lterators

Today

* Trees!
e General Idea and Uses
* Terminology

* Some examples
* Expression trees

* Introduction to structure5 BinaryTree class

* BinaryTree class implementation details
* Proofs and theory
* Traversing trees

Introducing Trees

e Our structures have had a linear organization
e Stacks, queues

* Even ordered vectors, ordered lists, arrays,
vectors, lists are visualized linearly

* By linear we essentially mean that each
element has at most one successor and at
most one predecessor...

Branching Out: Trees

e A tree is a data structure where elements can
have multiple successors (called children)

* But still only one predecessor (called parent)

Root

Tree Logic (Natalie Jereminjenko) at Mass MoCA

https://berkshireonstage.com/2016/07/08/get-a-sneak-peek-at-mass-mocas-phase-iii-expansion-its-a-game-changer/rs32047_joe_4-copy-copy-lpr-2-838x627/

“Computer Tree”

wefio

!
e er oo
/ UNIVAC
coc ot A 200
24 uavic
1108

¥
¥

€85 e

w0r & a1 [UNIVAC Ner CenfuRY 200
GP 901 HYDAC ccc / i fubtd NCR CENTURY 100
p COMPESSOR COLLG A
Gh 80 8400 12 UnvAC

2910 1218

MINUTEMAN
ADVANCED V2 /
s

couns ¢
an 7300 0

MUTEgAN w2 uniac
o
Bows " N 25 e /
hva 2 @ fuwod
R 28 RO N wos” Wz VEEOAN N _Jpion
T~ malog
A
ANTYG) o
AN/MIQY AERIS
HCM 100 UNIVAC Jo
uNivAC Anguve &
Anlrgor AN/ARO 34 / ! 1206

WesImGHOUSE SR RECOMP
ARIORNE s 002 i

AN/ASA 27 UBic
7—
TRAFFIC
MOBIDIC
b cum
wodipic ¢ TMACKER

AN/ASO 280V

ANTYX 6V
2 REDSTONE

N BN\ Yk

tocaT ANSQ 8 come, 32

LOGISTCS
FME O

MAGNEFUE B
LITTON 2040

CEIWIND |

e
REs)

19— i

AWAS__ a1t - ALWAC

500 ===

N 18
507 I ™ -""l
[HATIONAL 604 701 ""'—““m
AC WHITESAC Zy028
NATIONAL WHITE ™ -~
MATIONAL NATIONAL T e ' i
O s 03 e 0 “ lommminy ”’-c\ 140

1950 1950 1955 1950

MATIONAL
NATIONAL NATION. 304
S s 170

1970 1960

House of Normandy, Battle of Hastings, 1066

William |
Robert William |l Adela Henry |
Stephen William Matilda

Henry |

Tree Features

* Trees express hierarchical relationships

 Directed: root to leaf
* Root at the top
e | eaf at the bottom

* |nterior nodes in middle

* Parent, children, ancestors, descendants, siblings

* Degree (of node): number of children of node

* Degree (of tree): maximum degree (across all nodes)
e Depth of node: number of edges from root to node

e Height: maximum depth (across all nodes)

Other Trees

Phylogenetic tree
Directories of files

Game trees
e Build a tree

e Search it for moves with high likelihood of
winning

Expression trees

nghelmimhec Mollueca ¢ Chordata

" Jd K3 %am B OR A preeon

Echinodemata
Peeullocoelora
No bdd
cafity Segpeeflation Cegfnentation
OYOSOMES DEARSROSTOMES
g coelom from
cell m: digestive tube
Coelom o
Radial symmetry . Phylogenetic
Bilateral eymra
. i - of the T"ee

Animal Kingdom

True Ticoues

Anceetral Proticte

Miocene

+

Pleistocene
0_~ Before Present

Pliocene

7 A

e Domestic Dog

o F—

Millions of Years

Black Bear
Gray Wolf

Coyole

Cape Hunting Dog
Black-Backed Jackal |
Bush Dog -
Maned Wolf
Hoary Fox

Crab-Eating Fox
Gray Fox
Bat-Eared Fox
Raccoon Dog
Cape Fox

Red Fox
Fennec Fox

Kit Fox

Arctic Fox

spiued
MN-HOoM

spiued
uesAWYy
yinos

spiued
MN|-X04

~jannen

/\\

research papers

X /N N

index.html csl36 csl02T

N

lectures.html labs.html

Expression Trees

4%7 +3 */\
3

N

4 2

+ /
(4%2+3)+ ((10-2)/ 4) SN N
* -
3 4

N N
4 2 10 2

Introducing Binary Trees

Degree of each node <=2

Recursively defined. A tree can either be:
* Empty

* Root with left and right subtrees

SLL: Recursive nature was captured by nodes
(Node<E>) on inside

Binary Tree: No “inner” node class; single
BinaryTree class does it all

(Not part of the structure hierarchy)

Binary Trees for (Math) Expressions

* General strategy
e Make a binary tree (BT) for each leaf node
* Move from bottom to top, creating BTs
e Eventually reach the root

o Call “evaluate” on final BT

* Example

 How do we make a binary expression tree for: (4*2)+3
* Leaves are numbers

* Non-leaf nodes are operators
— We will apply each operator to its children (ex: left + right)

Example: Expression Trees

e S
4%2 +3 */\3
N
4 2

Build using constructor
new BinaryTree<E>(value, leftSubTree, rightSubTree)

BinaryTree<String> fourTimesTwo =
new BinaryTree<String>(“*",
new BinaryTree<String>("4"),
new BinaryTree<String>("2"));
BinaryTree<String> fourTimesTwoPlusThree =
new BinaryTree<String>(“+",
fourTimesTwo,
new BinaryTree<String>("3"));

Evaluating Expression Trees

 Starting at the root,
e Evaluate left subree
e Evaluate right subtree

e Perform operation (+, -, *, /) with left and right

int evaluate(BinaryTree<String> expr) {

1f (expr.height() == 0) {

return Integer.parselnt(expr.value());
} else {

int left = evaluate(expr.left());

int right = evaluate(expr.right());
String op = expr.value();
switch (op) {

case “+” : return left + right;
case “-" : return left - right;
case “*"” : return left * right;
case “/" : return left / right;

}
Assert.fail(“Bad op”);

return -1;

More Tree Terminology

e Some of the terminology is non-standard

* We will try to be consistent in this class, but...
* We want to be able to communicate to our friends
outside of Williams CS too!

* | hate jargon, but having a language for our data
structures gives us the ability to express ideas
and describe algorithms

Full vs. Complete (non-standard!)

e Full tree — A full binary ¢ Complete tree — A

tree of height h has complete binary tree of
leaves only on level h, height h is full to height h-|
and each internal node and has all leaves at level h
has exactly 2 children. in leftmost locations.

All full trees are complete, but not all complete trees are full!

