
[TAP:WNUME] Big-O
public static boolean contains(int[] nums, int x) {

return containsHelper(nums,x,nums.length);

}

private static boolean containsHelper(int[] nums, int x,

int curIdx){

if (curIdx == 0)

return false;

return nums[curIdx]==x || containsHelper(nums,x,curIdx-1);

}

• What is the time complexity of the code above?

A. O(n)

B. O(log n)

C. O(n log n)

D. O(n2)

E. Whatever
1

2

Administrative Details

• Lab 1

• I apologize for not having it returned yet

• Feedback will show up on github as a Pull

Request (PR)

• PRs give you the option to view comments

line-by-line, and respond to comments

• (New workflow this semester, so it is

taking time to get the kinks worked out. It

should be faster turnaround than printouts

once it is working.)

Agenda

• Induction

• List

3

(Proof by) Induction

• The mathematical cousin of recursion is

induction:

Mathematical Induction

• Prove that for every n ≥ 0

2i = 20 + 21 + 22 + ...+ 2n = 2n+1 -1
i= 0

n

å

Mathematical Induction

• Prove that for every n ≥ 0

0 + 1 + …+ 𝑛 =
𝑛(𝑛+1)

2

Agenda

• Induction

• List

10

The List Interface

interface List {

size()

isEmpty()

contains(e)

get(i)

set(i, e)

add(i, e)

remove(i)

addFirst(e)

getLast()

.

.

.

}

11

Pros and Cons of Vectors

Pros

• Fast access to elements

• Dynamically Resizeable?

Cons

• Slow updates to front

of list

• Hard to predict time

for add (depends on

internal array size)

• Potentially wasted

space

12

Singly Linked List

• There are two key components of Lists

• The list itself

• Instance varibles

– (Pointer to) the head node of the list

• Methods

– Those declared in the List interface

• Nodes

• Instance variables

– data

– (Pointer to) the “next” element

• Define methods

– Getters and setters
13

Singly Linked List Methods

public E get(int index) {

14

Singly Linked List Methods

public E set(E d, int index) {

15

Singly Linked List Methods
public void add(E d, int index) {

16

