CSCI 136
Data Structures &
Advanced Programming

Lecture 9
Spring 2018
Profs Bill & Jon



Administrative Details

e Lab |

* | apologize for not having it returned yet

* Feedback will show up on GitHub as a “Pull
Request”

* PRs give you the option to view comments line-
by-line, and respond to comments

* New workflow this semester, so it is taking time
to get the kinks worked out. It should be faster
turnaround than printouts once it is working.



Last Time

e Revisited Vector Growth
 Additive: O(n?)
e Multiplicative: O(n)

* Recursion
e Base case

e Recursive “leap of faith”

e Lab 3

e Subset Sum

e Helper method!
* Big-O!?



Today

* Induction
e An important proof strategy

e Closely tied to recursion

e List: A general-purpose interface

* Implementing Lists with linked structures
* Singly Linked Lists
e Circularly Linked Lists
* Doubly Linked Lists



Mathematical Induction

The mathematical cousin of recursion is
induction

Induction is a proof technique

Reflects the structure of the natural
numbers

Use to simultaneously prove an infinite
number of theorems!



Mathematical Induction

* Example: Prove that for every n 0

* Proof by induction mirrors recursion:

IV

e Base case:

e P istrueforn=20

* Inductive hypothesis:

e If P_is true for some n=0, then P_,, is true.

— (Using a smaller version of the problem, we solve a larger
version)



Mathematical Induction

Pt Xhoi=0+1+ ..+n="0

* Prove the base case: P is trueforn = 0

e Just check it! Substitute 0 into the equation.
0 =0(1)/2
e Assume the inductive hypothesis: P_ is true for
some nz=0

* Then use assumption to show that P_,, is true.
Write out P,,, and target equality

n+D((n+1D+1) m+1Dn+2)
ThiI;"iEln Hh= 2 } 2

n(n+1) n(n+1)+2(n+1) _ n’+3n+2 _ (n+1)(n+2)

t+1)= 2 2 2

. Flrst equality holds by assumed truth of P_!




What about Recursion?

* What does induction have to do with recursion?

e Same form!
* Base case

* Inductive case that uses simpler form of problem

* We can prove things about recursive functions using
induction.

* Example: factorial

* Prove that fact(n) requires n multiplications

public static int fact(n) {
if (n==0) return 1;
return n * fact(n-1);



fact(n) requires n multiplications

* Prove that fact(n) requires n multiplications

e Base case: n =0 returns |

e 0 multiplications

 Inductive Hypothesis: Assume true for all k<n, so fact(k)
requires k multiplications.

* Prove, from simpler cases, that the n case holds
e fact(n) performs 1 multiplication (n*fact (n-1)).
* We know fact (n-1) requires n—-1 multiplications (by our I.H.)
e 1+n-1 = n

— therefore fact (n) requires n multiplications.



Mathematical Induction

e Prove: Ezi=2°+2l+22+...+2"=2"+1—1
=0

(Practice at home)
e Prove: O+ 1+ ..+n° =0+1+..+n)’

* Prove: fib(n) makes atleast fib(n)
calls to £ib ()



Counting fib() method calls

Prove that £ib(n) makes at least £ib(n) calls to £ib()

e Basecases:n=0:l calb n=1; | call

* Inductive Hypothesis: Assume that for some n=2, fib(n-1) makes at
least £ib(n-1) callsto £fib() and £ib(n-2) makes at least
fib(n-2) callsto £fib ().

e Claim: Then £ib(n) makes at least £ib(n) calls to £ib()

— | initial call: fib(n)

— By induction: At least fib(n-1) calls for fib(n-1)

— And as least fib(n-2) calls for fib(n-2)

— Total: | + fib(n-1) + fib(n-2) > fib(n-1) + fib(n-2) = fib(n) calls

e Note: Need two base cases!



The List Interface

interface List {
size()
1sEmpty ()
contains(e)
get (1)
set(i, e)
add(i, e)
remove (1)
addFirst(e)
getLast ()

It” s an interface...therefore it
provides no implementation

Can be used to describe many
different types of lists

Vector implements List

Other implementations are
possible...



Pros and Cons of Vectors

Pros Cons
 Good general purpose list ¢ Slow updates to front
e Dynamically Resizeable of list (why?)

* Fast access to elements * Hard to predict time
. vec.get (387425) finds for add (depends on
item 387425 in the same internal array size)

number of operations

* Potentially wasted space
regardless of vec’s size

What if we didn’t have to copy the array each time we grew vec!?

|4



List Implementations

e General concept for storing/organizing data
e Vector implements the List interface
 We'll now explore other List implementations
e SinglyLinkedList
e CircularlyLinkedList
e DoublyLinkedList



Linked List Basics

* There are two key aspects of Lists

* Elements of the list

e Store data, point to the “next” element

e The list itself
* Includes head (sometimes tail) member variable

* Visualizing lists

head

N




Linked List Basics

e List nodes are recursive data structures

e Each “node” has:
e A data value

* A next variable that identifies the next element in
the list

e Can also have “previous” that identifies the
previous element (“doubly-linked” lists)

* What methods does the Node class need?



SinglyLinkedLists

* How would we implement SinglyLinkedListNode!

e SLLN = Node in the book (in Ch 9)

SinglyLinkedListNode = SLLN in my notes

value

e How about SinglyLinkedList!

* What would the following look like?

SinglyLinkedList = SLL in my notes

next

elementCount=3

head —»

»
P

addFirst(E d)

getFirst()!

addLast(E d)? (more interesting)
getLast()!




