Topics

* Design

* Java + Syntax
* Contracts

* Complexity

* Vectors

* Sorting

* Induction

* Recursion

* Linked lists

Midterm Review Lne 1 S

Design Java & Syntax

* Describe in English * Objects (state = members, computation = methods)
* Nouns -> State, group into classes static, final
(4
* Verbs -> Computation, create methods on classes

i 54 * Inheritance
* Adjectives -> Interfaces for similar classes

* public, private, protected

* Interfaces

* Abstract classes

* Avoid duplicate state, unless the performance advantage is « Derived (sub-) classes
significant * super

* Avoid duplicate code: use helper methods and abstract classes * Generics

* Caller decides return value, function implementer decides
arguments

Contracts Vector

* Document all assumptions » Amortization trick for O(1) append
* Pre & post-conditions * Bounds for common methods, e.g.,

* Class invariants * get/set:O(2)

* add : O(2) expected amortized
* add to front: O(n)

* removeAt : O(n)

* Assertions vs. [input] errors

Slelgulyle Complexity

Be able to recognize and describe algorithms « Definition of asymptotic upper bound: f(x) is O(g(x))
Insertion sort e e i .
* Drag each element forward (or backward). Easy on lists and arrays Identlfy tr|V|aIIy O(l)’ O(Iog(n)), O(n)’ O(nl)’ 02" algorlthms
* O(n?), low constants Expected and worst case bounds
Merge sort
* Recursive split and then merge. Ping-pong arrays, easy on lists
* O(nlogn)
Quick sort
* Recursive partition and then swap. Reasonable on arrays
* O(n log n) expected*, O(n?) worst
* Comparable elements to be sorted
* Comparator objects

* Expected amortized bounds

* Alot of caveats on this bound

Induction Recursion

* Structure an inductive proof * Linked-list applications

* Base case (e.g., letn=1) * Exhaustive enumeration (e.g., subset sum) application
* Inductive step (e.g., assume true for n = k, prove forn =k + 1)

* Full proof
* Relationship to recursion

* Iteration -> Recursion
* Recursion -> Iteration using an explicit stack

* How compilers/interpreters evaluate recursion using the built-in
stack

* Be aware of the space cost of the stack

Linked List Binary Numbers

* Trivial singly-linked list with only a head Decimal <-> binary conversion

* “Common” singly-linked list with head, tail, and count n bits = 2" unique representable values
« Doubly-linked list Bitwise operators: &, |, ~, A, >>, <<

Li ithd q Use of bit masks
ists withiCRIDVInCEES Common identities and tricks:

* Bounds for common methods under each variant, e.g., for common: o x<<1=x*2
* get/set: O(n) e Xx>>1=X/[2
* add:0(a)
* add to front: O(a)

e 4 X & (2"-1)
* removeAt : O(n), but O(2) during iteration

