

Name: _______________________________________ Partner: ________________________________
Python Activity 45: Iterators

Iterating over lists is useful, our LinkedList should be iterable as well!

Concept Model:
We are building on our Linked List user-defined types with some added functionality – we want to iterate
over our LinkedList objects!

CM1. Circle the built-in Python data types below that we can iterate over:
 bool float None range str tuple
 dict int list set TextIOWrapper (a file)

What does iterate mean?
__

CM2. The following code on the left iterates over a LinkedList with a for..loop, and the code on the
right attempts to use a for..each loop to iterate :

Iterating Over a Linked List
char_lst = LinkedList('a', LinkedList('b', LinkedList('c')))

for i in range(len(char_lst)):
 print(char_lst[i])

a. What might be displayed by the code on the left?
 __
b. What LinkedList method is being called on the left?
 __

c. Why might the code on the right throw an error, but not on the left?
 __

Learning Objectives
Students will be able to:
Content:
• Define an iterable
• Summarize how an iterable works
Process:
• Write code that enables a user-defined class to be iterable

• Write code to iterate over a LinkedList
Prior Knowledge
• Python concepts: LinkedList, iteration

for item in char_lst:
 print(item)

TypeError: 'NoneType' object is
not subscriptable

Critical Thinking Questions:

1. The following code assumes we have implemented the special methods, __iter__(self) and

__next__(self)for our LinkedList:
Interactive Python

>>> char_lst = LinkedList('a', LinkedList('b', LinkedList('c')))
>>> list_iterator = iter(char_lst)
>>> next(list_iterator)
a
>>> next(list_iterator)
b
>>> next(list_iterator)
c
>>> next(list_iterator)
StopIteration ----> 1 next(list_iterator)

a. What special method might the built-in function iter(..) call? ___________________

What special method might the built-in function next(..) call? ___________________

b. How does the output from the first 3 calls to next(list_iterator) relate to the values
in char_lst?
__
What might the next() built-in function do?
__

c. How many values are in char_lst? ___________________
What happens in the code above when we try to access more than this many values?
__
How do we know when we've run out of elements to iterate over in an iterable?
__

2. The following code extends our implementation of the LinkedList class with the special
methods, __iter__(self) and __next__(self) such that the behavior in the previous question is
implemented:

FYI: To be an iterable, a class has to implement the special methods, __iter__(self) and
__next__(self).

linkedlist.py

def __iter__(self):
 self._current = self
 return self

def __next__(self):
 if self._current is None:
 raise StopIteration
 else:
 val = self._current._value
 self._current = self._current._rest
 return val

a. Explain what the code in the __iter__ method is doing:
__

b. When does __next__ output a StopIteration exception?
(Hint: consult the previous question!)

How does out implementation of __next__ know when to output a StopIteration
exception?

c. What does __next__ do if it does not output a StopIteration exception?

3. Examine the following interaction in interactive Python:

a. How does the for..each loop above differ from the one we saw earlier in this activity?

 __

b. What special method might the for..loop call each time through the loop?
 (Hint: consult the code from question 1).

 __

c. When might the __iter__ method be called? Circle one:

FYI: An exception is an event which occurs during the execution of a program that disrupts the normal
flow of the program's commands. An exception is a Python object that represents an error, but
supports some special handling of that error.

>>> char_lst = LinkedList('a', LinkedList('b', LinkedList('c')))
>>> for item in char_lst:
... print(item)
a
b
c

Beginning of the for..loop After the for..loop ends
Never Every iteration of the loop

d. Why might we no longer see a StopIteration exception in this code?

 __

Application Questions: Use the Python Interpreter to check your work

TBD.

