

Name: _______________________________________ Partner: ________________________________
Python Activity 38: Classes - Inheritance

When subclasses inherit features from parent classes, it reduces code redundancy!

Concept Model:
We want to build a data structure to represent the artworks at the local art museum. Before we begin
programming, we should think about the different kinds of artwork, and how they are similar or different
from one another:

CM1. What are some of the common attributes shared by all three of these classes?

CM2. Does the Sculpture class have a speed attribute? __________

CM3. What are some of the common methods shared by all three of these [related] classes?

CM4. Does the Artwork class have a get_depth() method? __________

Learning Objectives
Students will be able to:
Content:
• Explain how parent and child classes are relevant to class inheritance
• Predict how methods and attributes will be inherited by child/sub-classes
Process:
• Build sub-classes that inherit attributes and methods from the parent class.
Prior Knowledge
• Python concepts: user-defined classes, attributes, methods, special methods

class Artwork
 Attributes:
 artist, title, medium, owner, height, width…
 Methods:
 get_artist, set_owner, get_provenance, …

class Photograph
 Attributes:
 same as Artwork plus: speed, aperture,
 camera, …
 Methods:
 same as Artwork plus: get_speed,
 get_camera, …

class Sculpture
 Attributes:
 same as Artwork plus: depth, …
 Methods:
 same as Artwork plus: get_depth, …

CM5. If we were to implement these three classes with our current concepts so far, how would we have to
implement the shared attributes & methods in each of our classes?

__

Critical Thinking Questions:
1. Examine the following code below, which represents two of the classes from our Concept Model.

artwork.py
0 class Artwork:

1 def __init__ self, title):
2 self._title = title

3 def get_title(self):
4 return self._title

5 def __str__(self):
6 return self._title

7 class Sculpture(Artwork):

8 def __init__(self, title, depth):
9 super().__init__(title)
10 self._depth = depth

11 def get_depth(self):
12 return self._depth

13 def __str__(self):
14 return self._title + str(self._depth)

24 if __name__ == "__main__":
25 tt = Sculpture("The Thinker", 140)
26 print(tt.get_depth())
27 print(tt.get_title())
28 print(tt)

a. Circle the class syntax that is new to us.
b. Fill in the blank: tt is an instance of a __________________ object.
c. What do you think will be displayed by line 26?

__
d. What do you think will be displayed by line 27?

__
Line 27 displays The Thinker. How might Python know tt 's _title attribute?
__

e. What do you think super().__init__(title)on line 9 is doing?

__

What might happen if we remove the reference to (Artwork)on line 7?

__

f. What do you think will be displayed by line 28? _________________________________
Line 28 displays The Thinker140. What method must print(tt) be calling?
__
How might python know which __str__ method to execute?
__

2. Examine the following code below, that extends our previous code:

artwork.py (continued)
15 class Photograph(Artwork):

16 def __init__(self, title, cam, spd):
17 super().__init__(title)
18 self._camera = cam
19 self._speed = spd

20 def get_camera(self):
21 return self._camera

22 def get_speed(self):
23 return self._speed

a. Write a line of code to create a new instance of a Photograph object:

b. If we were to print this new Photograph object, what might the output be?

The output would be just the Photograph object's title. Which method is likely being called
when we print this new Photograph object?

Compare your response to the response in Q1f. Why are they different?

c. Explain how Python chooses when to execute a method from a child class versus its parent
class:

Application Questions: Use Python to check your work

1. Implement a new set of classes and sub-classes that inherit from one another, according to the

following class diagram:

a. Create a new instance object for each of the newly defined classes:

b. Write some lines of code to use some of the shared and some of the specific-to-subclasses

methods:

