

Name: _______________________________________ Partners: ________________________________
Python Activity 32: Graphical Recursion

Critical Thinking Questions:

1. We want to draw concentric circles recursively, separated by a

whitespace gap, as follows:

a. What might be the base case? When should we stop

drawing circles? ___________________________

b. What is the small, repeated step?

c. How should we break the journey down into smaller pieces?

d. Fill in the partially completed code below with your answers to (a)-(c):

Recursive Code

Learning Objectives

Students will be able to:

Content:

• Predict what recursive turtle code will do

• Define function invariance

Process:

• Write code that draws line drawings recursively

• Write recursive functions that are invariant

Prior Knowledge

• Python concepts: recursion, turtle

from turtle import *

setup(400, 400)

def concentric_circles(radius, gap):

 if base case (a) :

 return 0

 else:

 # (b) small step:

 # (c) small step on smaller pieces:

 num_circles =

 # we drew one circle here, plus more to come!

 return 1 + num_circles

 e. This code produces the following output, why might that be?

2. The following code produces our desired output.

a. Circle where the code differs from what we have in Question 1:

Recursive Code

b. What does this new code do?

 __

Why is it necessary?

__

c. What does this code return? (Hint: It's different from what is displayed!)

 __

Highly recommend working through the Application Questions!

from turtle import *

setup(400, 400)

def concentric_circles(radius, gap):

 if radius < gap:

 return 0

 else:

 down() # pen down

 circle(radius) # (b) small step

 up() # pen up, don't want to draw!

 lt(90)

 fd(gap)

 rt(90)

 # (c) small step on smaller pieces:

 num_circles = concentric_circles(radius-gap, gap)

 # we drew one circle here, plus more to come!

 return 1 + num_circles

Application Questions: Use the Python Interpreter to check your work.

1. We now want to adjust our concentric_circles(..) code to create the following

designs, filling each circle with an alternating color (in this

case, "purple" and "gold").

a. First, write a helper function, draw_disc(radius,

color), that will draw a circle of the given radius and

fill color. You'll want to assume that the pen is up when the

function is called, and to retract the pen when you're done:

b. Next, we need to modify concentric_circles(..) by adding two parameters to

our function: color_outer and color_inner. Our base case will be the same as

before, but we'll need to add something about alternating colors to recursive steps:

 i. How do we add color to the recursive call (i.e., small steps)?

 __

 ii. How do we ensure the colors alternate in the recursive call?

 __

c. Write out the modified function, making use of our helper function, draw_disc(..),

and these two additional steps to handle color:

from turtle import *

setup(400, 400)

def draw_disc(radius, color):

put pen down

set the color

draw the circle with the color

pull pen up

FYI: When building recursive turtle functions, it is a good idea to ensure they are invariant. That is,

the position of the turtle is the same at the end of the function as it is at the beginning.

d. In the above code, we change the position of our turtle at the # reposition

comment. Place an asterisk where we might add code to return the turtle to its

original position, before the # reposition.

e. Write some lines of code to return the turtle to its original position:

 (Hint: We used 3 lines to reposition, so we'll need 3 lines to retrace its steps!)

 __

 __

 __

def concentric_circles(radius, gap, color_outer, color_inner):

 if radius < gap:

 return 0

 else:

 # small step

 # reposition

 # small step on smaller pieces:

 # remember to handle alternating colors!

 num_circles =

 # we drew one circle here, plus more to come!

 return 1 + num_circles

2. Write a recursive turtle function, nested_circles(radius,

min_radius, color_out, color_alt), to produce

the following visual output with doubly nested recursive

turtles. Also, ensure the function returns the number of circles

drawn.

▪ Hint 1: Follow the steps we've used previously to figure out

the pieces of the recursion & base case.

▪ Hint 2: You'll need to have two recursive calls as part of

your breaking the journey down!

▪ Hint 3: Whereas in the previous example, invariance of the

function likely would not impact our output, it matters in the case of this

example, with multiple recursive calls!

3. Write a recursive turtle function, tree(trunk_len,

angle, shrink_factor, min_len), to produce the

following visual output recursively, while also returning the

number of branches drawn.

▪ Hint 1: Follow the steps we've used previously to figure

out the pieces of the recursion & base case.

▪ Hint 2: You'll need to have two recursive calls as part of your breaking the

journey down!

▪ Hint 3: Invariance of the function will likely matter again!

