

Name: _______________________________________ Partner: ________________________________

Python Activity 29: Recursive Function Frames
Using the function frame model can help us understand how recursion works.

Concept Model:

Consider the concept of factorial:

The factorial of a non-negative integer, n, denoted by n!, is the product of all positive integers

less than or equal to n. The factorial of n also equals the product of n with the next smaller

factorial: i.e. n! = n * (n-1) * (n-2) * (n-3) * …3 * 2 * 1 4! = 4 * 3 * 2 * 1 = 24

 n! = n * (n-1)! 5! = 5 * 4! = 120

We can write this recursively in Python with the following code:

factorial.py

1. First, identify the important recursion steps in this example code:
a. On which line is the stopping condition? ___________________________

b. On which line is the small repeated step? ___________________________

c. On which line is the journey broken down into smaller pieces? ______________

When Python executes a function, it creates a frame for all the variables created in that function.

Whenever a function calls another function, it waits until that function returns an answer before

continuing (and that function call is replaced with the answer it returns). We call this a function

frame stack, as elements in a stack are added or removed from the top of the stack to the bottom,

such as with a stack of plates.

Learning Objectives

Students will be able to:

Content:
• Summarize how the function frame stack works

• Describe how the function frame stack works for specific functions

Process:
• Predict the output of recursive programs.

Prior Knowledge

• Python concepts: recursion

0 def factorial(n):

1 if n <= 1:

2 return 1

3 return n * factorial(n-1)

4 if __name__ == '__main__':

5 print(factorial(4)) # prints 24

6 print(factorial(3)) # prints 6 print(factorial(3))

3*factorial(2)

2*factorial(1)

1

In this example, when print(factorial(3)) is first called on line 5, a new function frame is

made for the factorial(3), and nothing will be printed until that frame is executed

completely (i.e., returns a value):

However, we see inside the function frame for factorial(3) that we have another call to

factorial(..), with factorial(n-1). This creates a new function frame for

factorial(2), and the function frame for factorial(3) will not return until that new

function frame is executed. Inside factorial(2), the additional call to factorial(n-1)

creates a new function frame for factorial(1). Within the function frame for

factorial(1), we reach the base case and return the value 1.

When the 1 is returned it replaces the call to factorial(n-1) in the function frame for

factorial(2). This in turn allows the function frame for factorial(2) to return the value 2*1.

When the 2 is returned, it replaces the call to factorial(n-1) in the function frame for

factorial(3). This in turn allows the function frame for factorial(3) to return the value 3*2*1.

When the 6 is returned, it replaces the call to factorial(3) in the function frame for factorial.py.

This in turn allows the print(..) function to display the final value of 6.

2. Describe how the function frame stack would be different for a call to

factorial(4):

__

__

__

__

__

FYI: When we return from a function frame, "control flow" goes back to where the function call was

made. The function frame, and the local variables inside it, are destroyed after the return. If a function

does not have an explicit return statement, it returns None after all statements in the function body are

executed. The return value replaces the function call.

n

if n <= 1:

 return 1

return n*factorial(n-1)

3

factorial(3)

n

if n <= 1:

 return 1

return n*factorial(n-1)

2

factorial(2)

n

if n <= 1:

 return 1

return n*factorial(n-1)

1

factorial(1)

Base case reached!

Critical Thinking Questions:

1. Examine the sample code below and its corresponding output:

count_down.py

Output

a. Identify the recursive steps:

On which line is the base case? ____________________________

On which lines are the small repeated steps? ____________________________

On which line is the journey broken down into smaller pieces? ______________

b. What might count_down(4)return? ________________

c. What might count_down(4)print?

d. Draw a function frame stack diagram for a call to count_down(3), similar to what we

did for factorial(3) in the Concept Model example above. As there's a

print(..) call in our recursive function, you should also keep track of what is printed

(and when)!

e. How many function frames are created? ________________

 (Hint: How many function calls to count_down(n) does Python make?)

0 def count_down(n):

1 if n < 1:

2 return 0

3 else:

4 print(n)

5 return count_down(n-1)

6 if __name__ == "__main__":

7 count_down(5)

5

4

3

2

1

Output

2. Examine the sample code below and its corresponding output, which is similar to the previous

question:

count_up.py

Output

a. Circle the code in count_up(..) that differs from count_up(..).

b. Identify the recursive steps:

On which line(s) is the stopping condition? __________________________

On which lines are the small repeated steps? ____________________________

On which line is the journey broken down into smaller pieces? ______________

c. What might count_up(4)return? ________________

d. What might count_up(4)print?

e. Draw a function frame stack diagram for a call to count_up(3), similar to what we

did for factorial(3) in the Concept Model example above. As there's a

print(..) call in our recursive function, you should also keep track of what is printed

(and when)!

f. How many function frames are created? ________________

 (Hint: How many function calls to count_up(n) does Python make?)

0 def count_up(n):

1 if n < 1:

2 return 0

3 else:

4 result = count_up(n-1)

5 print(n)

6 return result

7 if __name__ == '__main__':

8 count_up(5)

1

2

3

4

5

Output

