
Lists are useful data structures, but what if the relationship between data isn’t sequential?

Critical Thinking Questions:

1. Examine the sample code defining a list of lists, below:

Sample Code

a. What is stored at dog2owner[1][1]? ________________________________

c. Write a line of code to print the name of Sally’s owner using dog2owner:

d. Write a line of code to access and print the name of Lida's dog via dog2owner:

e. As dog2owner gets bigger and bigger (the CS department is growing!), will a list of a

lists be an accessible way to continue storing this information?

2. The following code occurs in interactive Python and introduces a new data structure:

a. What does dt['sally'] do?

__

b. How might python know that Sally (the dog) is mapped to Jeannie (the owner)?

Where is that relationship defined?

Learning Objectives

Students will be able to:

Content:

• Define a dictionary.

• Identify the key and value pair of a dictionary.

• Explain why a dictionary is a good data structure for organizing data.

Process:

• Write code that accesses the keys, values, and length of a dictionary.

• Write code to create and modify dictionaries.

• Write code that iterates over a dictionary’s keys.

Prior Knowledge

• Python concepts: lists of lists, indexing, mutability, len(..), for.. loops

0 >>> dt = {'pixel':'iris','sally':'jeannie','jerry':'lida'}

1 >>> dt['sally']

2 'jeannie'

dog2owner = [['pixel','iris'],['sally','jeannie'],['jerry','lida']]

print(dog2owner[0][0]) # prints: 'pixel'

!"#$% &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& '"()*$(%
 '+),-* ./)010)+ % 30/)0-*"(0$426

 __

c. In the line, dt['sally'], what does the value in the square brackets represent?

 __

d. Write a line of code to print the name of your CS134 instructor's name, accessed

via the dictionary, dt: ___

e. Why might a dictionary be a better data structure for this data than a list of lists?

__

f. How would you describe the keys and values for this dictionary, dt?

keys:___________________________ values:___________________________

g. What type of data is stored in the keys and the values for dt?

keys:__________________________ values:___________________________

3. The following code occurs in interactive Python and introduces a new data structure:

a. What is the programmer trying to do with the dt['jeannie'] on line 1?

__

b. Why might this code be throwing the error on line 2?

 __

c. What does this error tell you about what can go in the dictionary square brackets?

 __

4. Examine the following code from interactive Python:

a. What does the line dt['wally'] = 'steve' do?

b. What might this imply about the mutability of dictionaries?

FYI: A dictionary is an unordered data structure that instead of storing values at numerical indices,

values are mapped to keys. Keys must be an immutable data type.

0 >>> dt = {'pixel':'iris','sally':'jeannie','jerry':'lida'}

1 >>> dt['wally'] = 'steve'

2 >>> dt

3 {'pixel':'iris','sally':'jeannie','jerry':'lida','wally':'steve'}

0 >>> dt = {'pixel':'iris','sally':'jeannie','jerry':'lida'}

1 >>> dt['jeannie']

2 KeyError: 'jeannie'

c. What does the object in square brackets on the left hand side of the assignment

operator in line 1 represent? (Circle one) key or value

d. What does the object on the right hand side of the assignment operator in line 1

represent? (Circle one) key or value

e. Write a line of code to add Bill and his dog, Artie, to our dictionary.

5. Examine the following code from interactive Python:

a. What type of data is stored in the keys and the values for cs_pets?

keys:_____________________________ values:_____________________________

b. How many keys does cs_pets have? _______________________

c. What is the length cs_pets? _______________________

d. How does python determine the length of a dictionary object?

e. If we added a line 3 of code, cs_pets['others'] = ['hamster',

'ferret'], what might len(cs_pets) return? _______________________

7. Examine the following example code:

a. If we wrote a fourth line of code, print(coll), what might be the output?

 __

b. At the end of this code execution, coll only has: {'colleges': 'amherst'}

Why might this be?

 __

8. Examine the following example code from interactive python:

FYI: Dictionaries can only have one key of its value, any replicated key:value mappings added will

simply overwrite the previous one!

>>> coll = dict() # can also do: coll = {}

>>> coll['colleges'] = 'williams'

>>> coll['colleges'] = 'amherst'

0 >>> cs_pets = {'dogs':9, 'cats':4, 'bees':20000}

1 >>> len(cs_pets)

2 3

0 >>> date = {'month':'dec', 'day':9, 'year':1906}

1 >>> for mykey in date:

2 ... print("The", mykey, "is", date[mykey])

a. What data does the dictionary, date, appear to hold?

b. If you had to guess, what might the programmer want to be output by line 2?

c. For the first defined item of date what might mykey and date[mykey] refer

to on lines 1 & 2?

mykey:________________ date[mykey]:________________

d. The first time through the loop defined on line 1, line 2 might print 'The month

is dec' What might be printed the second time through the loop?

 __

e. What does line 1, for mykey in date:, do?

 __

f. Write some code that will iterate over the items in date and print only the values:

 __

 __

 __

__

8. Examine the following example code from interactive python:

a. What do you think will be the output of line 1?

b. Line 1 actually outputs ['day', 'month', 'year']. How do these values

relate to the data dictionary?

c. Write some lines of code that will construct a list of the values in date, sorted by the

keys in date:

__

__

__

__

__

__

__

Application Questions available in the digital file on Glow.

0 >>> date = {'month': 'dec', 'day': 9, 'year': 1906}

1 >>> sorted(date)

Application Questions: Use the Python Interpreter to check your work

1. Write a function that checks if a given dictionary, d, has a given key. If it doesn’t, create a new

list at key with the given value as its only element. If it does already have the key, append

value to the existing list mapped to key.
 def append_dict_lst(d, key, value):

2. Write a function, data_entry that collects data from the user to put into a dictionary. The user

should be prompted for a key, and then value data to be added to a dictionary, and this process

should be repeated until they enter the text 'done'. For extra bonus points, use your previous

function, append_dict_lst, to ensure that no data is overwritten, even if a key is duplicated!

The data_entry function should return the dictionary when the process is done.
 def data_entry():

We can use dictionaries to represent all sorts of structures of data.

Critical Thinking Questions:

1. Examine the sample code below, declaring several dictionaries, which maps ice cream flavors as

keys to the number of cones sold. Each dictionary represents a different year of sales.

lickety.py

a. Given the code in its current state, write a single line of code to display the expected output if the

user entered 2020 on line 25: ___

b. Would your proposed approach work if we wanted to allow the user to input any year?

Summarize what we would need to do to support user input of any year:

c. We could imagine a solution like the one outlined in the code below:

What is the type of the keys in year_table? ______________

What is the type of the values in year_table? ______________

Write a line of code to display the expected output if the user entered 2020 on line 50

(Hint: remember what the keys' type is!):

Learning Objectives

Students will be able to:

Content:

• Define a nested dictionary or dictionary of dictionaries

Process:

• Write code to construct and add elements to dictionaries of dictionaries

• Write code to access elements of dictionaries of dictionaries

• Write code to iterate over dictionaries of dictionaries

Prior Knowledge

• Python concepts: dictionaries, data types, \n

0 yr2022 = {'Purple Cow':1027,'Sweet Cream':1509,'Mudpie':2231}

1 yr2021 = {'Purple Cow':992, 'Sweet Cream':1623,'Mudpie':2064}

2 yr2020 = {'Purple Cow':891, 'Sweet Cream':955, 'Mudpie':520}

 #yr2019 = ...

 # Imagine we had 20 (or more!) years' worth of data

25 year = input("Year of ice cream sales? ")

26 year_table = [{}] * 2023 # Adds 2023 empty dictionaries to this list

27 year_table[2022] = yr2022

28 year_table[2021] = yr2021

29 year_table[2020] = yr2020

 # Imagine this continued for 20 more years' of data

50 year = input("Year of ice cream sales? ")

Name: _______________________________________ Partner: ________________________________
Python Activity 27: Dictionaries of Dictionaries

d. How many lines of code (approximately) does this solution require? ~ ________lines of code

e. Is this a good/efficient/convenient solution? Why or why not?

f. Instead of a list of dictionaries, what might be a different data structure that allows us to access the

data by year more efficiently?

a int | str | bool | function | tuple | set | dictionary (circle one) of dictionaries.

2. Examine the sample incomplete code below, which should be a better solution than the one

proposed in Question 1c.

lickety.py

a. Given the call to year_table[year] on line 31 and how we intend to iterate over all the data

in year_table on line 33, what type of data structure might year_table be? ____________

b. Complete the line of code on line 20, creating a new, empty object for year_table:

20 year_table = ___

c. Write a few lines of code, representing how you would add the first three dictionaries to

year_table on lines 21-30:

d. Examine the code on lines 32-34. When a user inputs "Sweet Cream" the output should be

something similar to: '2022: 1509 \n 2021: 1623 \n 2020: 955'. Write a line of

code, for line 34, to do this:

e. It is possible that a particular ice cream flavor might have only received sales in some years. In

that case, the number 0 should be stored in the dictionary and then displayed when printing on

line 34. Rewrite the code around line 34 to handle this situation:
for icecream_year in year_table:

0 yr2022 = {'Purple Cow':1027,'Sweet Cream':1509,'Mudpie':2231}

1 yr2021 = {'Purple Cow':992, 'Sweet Cream':1623,'Mudpie':2064}

2 yr2020 = {'Purple Cow':891, 'Sweet Cream':955, 'Mudpie':520}

 #yr2019 = ...

 # Imagine we had 20 (or more!) years' worth of data

20 year_table = # (i) What type of data structure?

21 # (ii) How to add our dictionaries to year_table?

30 year = input("Year of ice cream sales? ")

31 print(year_table[int(year)])

32 flavor = input("Flavor of interest? ")

33 for icecream_year in year_table:

34 print(# (iii) Year: Number Sold)

Application Questions: Use the Python Interpreter to check your work

1. We don't typically begin with 20+ dictionaries hard-coded in a Python script! It's much more realistic

to read-in the data from a file, and accumulate the data into a nested data structure (much like we've

previously done with lists of lists). This allows us to write fewer lines of code.

Given the sample data file below, read-in the data into a data structure that allows us to access the data

as specified by the sample code in Question 2.

lickety.csv (could have 60+ lines!)

2. a. We want to hire an effective offensive player (i.e., someone who scores a lot) for our new football

(soccer) team. We're pursuing this goal with a data-driven approach, and have a comma-separated

values files containing data on the top goal-scorers for the past several years. The first several lines of

the file are shown below, and each row has the season (year), player's name, number of goals, number

of passes, and number of fouls. Write a function, read_goal_data(filename), that takes a string

filename and returns a dictionary of dictionaries, mapping the year to each season of data (just the

names and their number of goals).

b. Write a function, get_top_scorers(season_table), that takes a dictionary of

dictionaries as an argument and returns a list of player names that appear for all seasons of our

data.

all_seasons.csv (first 9 lines)

2022,Purple Cow,1027

2022,Sweet Cream,1509

2022,Mudpie,2231

2021,Purple Cow,992

2021,Sweet Cream,1623

2021,Mudpie,2064

2020,Purple Cow,891

2020,Sweet Cream,955

2020,Mudpie,520

2018,Pierre-Emerick Aubameyang,22,692,13

2018,Sadio Mané,22,1,34

2018,Mohamed Salah,22,1,25

2018,Sergio Agüero,21,771,21

2018,Jamie Vardy,18,416,19

2018,Eden Hazard,16,1,12

2018,Callum Wilson,14,440,41

2018,Raúl Jiménez,13,1,42

2018,Alexandre Lacazette,13,771,51

