
Name: _______________________________________ Partner: ________________________________
Python Activity 19: Identity & Value

How do variables actually work?

Critical Thinking Questions:

1. Examine the sample interactive python interaction and diagram:

a. What is the value of the num object? ___________

b. What might be the memory address of the num object? _______________________

c. What might the built-in function id(..) do?:

__

2. Examine the following interaction, which continues from the previous example:

a. What is now the value of the num object? ___________

b. What might be the memory address of the num object? ____________

c. What changed? Why might that be?:

__

Learning Objectives

Students will be able to:

Content:

• Describe what the built-in function id(..) does

• Explain the difference between identity and value

• Summarize how memory address relates to mutability

• Describe what the is and += operators do

Process:

• Write code that uses the is operator to appropriately compare objects

• Write code to mutate a mutable object

• Write code to determine what other object types are mutable

Prior Knowledge

• Python concepts: lists, strings, boolean operators

Interactive Python

Continued

FYI: Everything in Python is an object. When an object is created, it is assigned an address in memory

(or identity). An object's identity never changes. An object also has a value. Objects whose value

can change are mutable. Objects whose value cannot change are immutable. Variable names point

to memory addresses of a stored value.

>>> num = 5

>>> id(num)

4503421296

num
4503421296

5

C
o

m
p
u

ter M
em

o
ry

>>> num = num + 2

>>> id(num)

4503421352

num

4503421296

5

C
o

m
p
u

ter M
em

o
ry

4503421352

7

3. Observe the following interaction in interactive python:

a. How do the identities of plants1 and plants2 compare?

__

What might the plants2 = plants1 line do?

__

How does it affect the memory address of plants2?

__

b. What values do plants1 and plants2 point to?

__

Why does the plants1 == plants2 line return its boolean value?

__

4. Observe the following interaction in interactive python:

a. How do the identities of plants1 and plants2 compare in this example?

__

 What did we do differently in this example, compared to the previous one?

__

FYI: The values outputted by the id(..) function can change between python sessions, or on one machine

versus another. Therefore, the value is not the important part of id(), just whether two id()s match!

0 >>> plants1 = ["jade", "aloe", "fig"]

1 >>> id(plants1)

2 4336302400

3 >>> plants2 = plants1

4 >>> id(plants2)

5 4336302400

6 >>> plants1 == plants2

7 True

8 >>> plants1 is plants2

9 True

>>> plants1 = ["jade", "aloe", "fig"]

>>> id(plants1)

4336302400

>>> plants2 = ["jade", "aloe", "fig"]

>>> id(plants2)

4336284224

>>> plants1 == plants2

True

>>> plants1 is plants2

False

How might this have impacted the result of plants1 is plants2?

__

What does this suggest about the is operator?

__

b. Why does the plants1 == plants2 line return its boolean value?

__

c. What does the above code tell us about the difference between the == operator and the is

operator? __

5. Observe the following session in interactive python:

a. What is the programmer trying to do on lines 0 & 1? (Hint: what appears on the lefthand

side of an assignment operator? The righthand side?)

__

b. Why might line 1 cause an error for string plant, but not line 4 with list plants?

__

c. What is likely contained in list plants at the end of this code?

__

d. Are strings mutable? How do you know?

__

6. Observe the following session in interactive python:

a. Draw a diagram, similar to questions 1 & 2 that shows the two variables above, pointing

to their values in memory:

FYI: The is operator essentially uses the id(..) function to compare the addresses of two objects. The = =

operator compares their values.

FYI: Mutable objects are changeable. Lists can be changed using indexing, which means we can put an

indexed list on the lefthand side of an assignment operator and reassign its values!

>>> plants1 = ["jade", "aloe", "fig"]

>>> plants2 = plants1

0 >>> plant = "spider"

1 >>> plant[-1] = "y"

2 TypeError: 'str' object does not support item assignment

3 >>> plants = ["jade", "aloe", "fig"]

4 >>> plants[-1] = "cactus"

b. Modify your diagram above to incorporate this interaction:

c. What might plants1 now point to? plants2?

__

d. What change might you expect to see in the id of plants1 and plants2, when

reassigning plants1?

__

7. Observe the following session in interactive python:

a. Circle the new operator being used in this example, that wasn’t in the previous example.

b. Draw a diagram, similar to questions 1 & 2 that shows the two variables above, pointing

to their values in memory at the end of the code:

c. How does the + operator differ from the += operator, with mutable objects (like lists)?

__

FYI: Concatenation + always returns a new object.

FYI: Mutable objects are changeable. Lists can be changed using the append operator +=, indexing,

and other methods we will learn about later.

>>> plants1 = ["jade", "aloe", "fig"]

>>> plants2 = plants1

>>> plants1 += ["zz"]

>>> plants1

['jade', 'aloe', 'fig', 'zz']

>>> plants2

['jade', 'aloe', 'fig', 'zz']

>>> plants1 = plants1 + ["pothos"]

>>> plants1 is plants2

False

Application Questions: Use the Python Interpreter to check your work

1. Write and execute code to determine if the following object types are mutable or not:

Lists: __

__

Strings __

__

Integers __

__

Floats: __

__

Booleans: __

__

2. This example/information will not be on any exam or homework!

Observe the following interaction in interactive python:

a. Why does the tea1 == tea2 line return its boolean value?

b. Why might the tea1 is tea2 line return its boolean value?

__

c. What does the above code and previous example tell us about the

difference between strings and lists?

__

d. What does the above code and previous example tell us about the difference between

immutable and mutable objects when creating new values?

 __

FYI: Python has a confusing optimization where small numbers (-5…255) are remembered in an integer

pool and short strings (less than 20 characters and created at compile-time and lack special

characters) are interned, so these values created separately will point to the same memory address.

With strings, Python may intern more than just the specified strings above.

Do not rely on this behavior!

>>> tea1 = "assam"

>>> id(tea1)

4462577328

>>> tea2 = "assam"

>>> id(tea2)

4462577328

>>> tea1 == tea2

True

>>> tea1 is tea2

True

