

Name: _______________________________________ Partner: ________________________________
Python Activity 18: Designing Algorithms for Sequences

Awesome things we can do with our awesome list, string, and sequence operators!

Critical Thinking Questions:

1. Examine the sample code defining a list below.

Sample Code

a. Given a list, dog_list, we want to find all names that contain a certain letter,

character, in dog_list using an algorithm that is generalizable to other

lists of names. What might we have to keep track of in order to do this?

b. Write out pseudocode for a generalizable algorithm that will identify which

names in dog_list contains letter, character:

Learning Objectives

Students will be able to:

Content:

• Define a docstring and doctest

• Decompose Problems: Identify the sub-problems within a given problem.

• Encapsulate smaller, repeated sub-solutions into helper functions

• Design algorithms to solve a given problem.

Process:

• Incorporate docstrings and doctests into our code

• Write code to iterate over nested sequences to collect specified information

• Use appropriately designed accumulator variables for given problems

Prior Knowledge

• Python concepts: lists, strings, for loops, nested lists, nested loops

FYI: An algorithm is a sequences of generalizable steps to solve a particular problem.

dog_list =

["pixel howley","chelsea doret","artie q. jannen","sally albrecht","velma"]

c. How might you adapt your approach to find only first names that contain

character?

2. Continuing on with our algorithm design…

a. Given a string, name we want to generate a substring representing only the first

name. When given a name, similar to the elements in dog_list how do we know

what is the first name?

b. We want this code to work for all of the names in dog_list. What special cases

might we have to consider?

c. Complete the following function body to return the first name of a string name:
def get_firstname(name):

 """ returns the firstname in string, name

 >>> get_firstname("pixel howley")

 'pixel'

 """

 # initialize accumulator variable

 # look at each character in the name

 # if this character is a space, we’re done!

 # otherwise, accumulate the character

 # return the name

d. Place a star next to the docstring in this example. Place a triangle next to the doctest.

What might be an additional good doctest for this function?
>>> get_firstname(__________________________________)

what should be returned?

FYI: Docstrings are multiline comments that appear just under a function header but above the function body that

describe what that function does. They are denoted with tripe-quotes (either single or double), and often

include doctests which are example snippets of code to test the function in interactive python.

3. Examine the code below, that finds all names that contain a certain letter, character, in
dog_list:

Sample Code
def first_contains_character(name_list, char):

 """ Returns a list of names in name_list containing character"""

 result = []

 for name in name_list:

 if char in get_firstname(name):

 result = result + [name]

 return result

a. Trace through this function with the example function call

first_contains_character(["pixel howley","chelsea doret"], 't'):

name_list = [______________,______________] char = _____

result name char in get_firstname(name)

b. What will be returned by the function call

first_contains_character(["pixel howley","chelsea doret"], 't')?

c. We want to change this function to only return names that start with the given

character, char. Circle what code would have to change. What code would you

replace it with?

d. What would be a good doctest for this new function, starts_character(..)?
>>> starts_character(_____________________________________)

what should be returned?

3. Now we’d like to gather two lists, one of the longest names in a name_list, and one of

the shortest names. Here’s an example doctest:

a. What type of object does shortlong_names return? ____________________

b. How might we access the shortest name in this returned result?

>>> dl = ["pixel howley","chelsy doret","artie jannen","velma"]

>>> shortlong_names(dl)

[['velma'], ['chelsy doret', 'artie jannen']]

c. Why might 'velma' be returned as a list of strings, rather than just a string?

d. Write pseudocode to explain your algorithm for the

shortlong_names(name_list) function:

Convert your pseudocode to Python in a file after class, and see if it works! Fix any logic errors!

4. Now we’d like to write a function, last_names(name_list) that will return a list

of all the lastnames in name_list. To do so, might consider writing a helper function,

get_lastname(name)which returns the last name from a name string, just as we did

with get_firstname. However, there is a more generalizable solution that will work

for retrieving first names, last names, and middle names. Observe the following example

name_list:

a. What might be a generalizable approach that will help us retrieve any first, middle,

and last names (if they exist), for all the string examples in name_list?

b. Write out code for this helper function below:
def ___________________(a_string):

FYI: A helper function is a function that encapsulates a smaller part of a larger problem we’re trying to solve with

another task (often, another function). When designing an algorithm, we decompose that algorithm into

smaller pieces

name_list =

["pixel howley","chelsea doret","artie q. jannen","sally albrecht","velma"]

c. Observe the following code below. How does it differ from your solution?:

Sample Code
def split(a_string, char):

 """ splits a string into a list, based on given char

 >>> split("oh hi doggie", ' ')

 ['oh', 'hi', 'doggie']

 """

 result = []

 curr_string = ''

 for ch in a_string:

 if ch == char:

 result = result + [curr_string]

 curr_string = ''

 else:

 curr_string = curr_string + ch

 result = result + [curr_string]

 return result

d. Write a line of code that uses this split function to grab the last name from the

string "artie q. jannen":

e. Write out Python code for a function, last_names(name_list) that takes a list

of names and returns a list of just the last names in each name. Use the helper

function, split()!

Application Questions: Use the Python Interpreter to check your work

1. Convert all your pseudocode in this activity to Python, and test it with a Python

interpreter! Be sure to write good docstrings and doctests. Create doctests that will stress

test your code using edge cases like empty string, empty list, and others!

2. Write a function, most_vowels(name_list) that takes a list of strings and returns a

list of the names with the most number of vowels. You may find it helpful to write two

helper functions: is_vowel(char) and count_vowels(a_string).

3. Write a function, least_vowels(name_list) that takes a list of strings and returns

a list of the names with the least number of vowels. You may find it helpful to reuse your

two helper functions: is_vowel(char) and count_vowels(a_string).

