
Name: _______________________________________ Partner: ________________________________
Python Activity 14: Looping Structures -- Nested Loops

To look through a sequence of sequences, we need a loop of loops!

FYI: Stepping or tracing through code by hand is an important skill for debugging logic errors

related to computational thinking. Keep track of the relevant variables’ values and how they

change line-by-line.

1. Observe the following code snippet:

Python Program
def mystery_print():

 for letter in ['b', 'd', 'r']:

 for suffix in ["ad", "ib", "ump"]:

 print(letter + suffix)

mystery_print()

a. Examine the code above. What is the output of this program? Trace through the values as

they change:
 letter suffix printed

Before the outerloop:

Outer Iteration 0: _________

Inner Iteration 0: _________ __________________ _______________________

Inner Iteration 1: _________ __________________ _______________________

Inner Iteration 2: _________ __________________ _______________________

Outer Iteration 1: _________

Inner Iteration 0: _________ __________________ _______________________

Inner Iteration 1: _________ __________________ _______________________

Inner Iteration 2: _________ __________________ _______________________

Outer Iteration 2: _________

Inner Iteration 0: _________ __________________ _______________________

Inner Iteration 1: _________ __________________ _______________________

Inner Iteration 2: _________ __________________ _______________________

Learning Objectives

Students will be able to:

Content:

• Trace through the output of nested for.. loops with lists and strings

• Identify inner and outer loops

Process:

• Write code that uses a nested for.. loop with accumulator variables

Prior Knowledge

• for-each loops, lists, strings, range

b. How many for-each loops are in this code? _______ Is one loop completely executed

before the next loop begins? _______ What do you call this type of loop?

 c. Label the inner loop and the outer loop.

 d. What does the inner loop do? ___

 How does the inner loop know when to stop? __________________________________

e. What does the outer loop do? ___

How does the outer loop know when to stop? __________________________________

 f. How many times is the following line of code executed in the program? ______________
 print(letter + suffix)

 g. The following is the code's output, how does it differ from what you expected?

__

 __

2. Observe the following code snippet:

Python Program
def mystery_return(char, list_of_str):

 locations = []

 for word in list_of_str:

 found = False

 for i in range(len(word)):

 if not found and word[i] == char:

 locations = locations + [i]

 found = True

 return locations

print(mystery_return('e', ["eat", "more", "cheese"]))

a. Examine the code above. What is the output of this program? Trace through the values as

they change:

char → __________

list_of_str → ____________________

 locations word found range(len(word)) i

Before the outerloop:

Outer Iteration 0: ________

Inner Iteration 0: ____________ ________ ________ _________________________ ____

Inner Iteration 1: ____________ ________ ________ _________________________ ____

Inner Iteration 2: ____________ ________ ________ _________________________ ____

FYI: A loop within another loop is known as a nested loop. Proper indentation is essential for the

loops to work correctly.

bad

bib

bump

dad

dib

dump

rad

rib

rump

Outer Iteration 1: ________

Inner Iteration 0: ____________ ________ ________ _________________________ ____

Inner Iteration 1: ____________ ________ ________ _________________________ ____

Inner Iteration 2: ____________ ________ ________ _________________________ ____

Inner Iteration 3: ____________ ________ ________ _________________________ ____

Outer Iteration 2: ________

Inner Iteration 0: ____________ ________ ________ _________________________ ____

Inner Iteration 1: ____________ ________ ________ _________________________ ____

Inner Iteration 2: ____________ ________ ________ _________________________ ____

Inner Iteration 3: ____________ ________ ________ _________________________ ____

Inner Iteration 4: ____________ ________ ________ _________________________ ____

Inner Iteration 5: ____________ ________ ________ _________________________ ____

b. Label the inner loop and the outer loop.

c. What does the inner loop do? ___

 How does the inner loop know when to stop? __________________________________

d. What does the outer loop do? ___

How does the outer loop know when to stop? __________________________________

e. How many times is the following line of code executed in the program?

 locations = locations + [i] ______________

 if not found and word[i] == char: ______________

 Why might the number of times executed be different for these two pieces of code?

__

f. What does the found variable do in this code?

__

 __

 __

g. The following is the code's output, how does it differ from what you expected?

__

 __

 __

FYI: We can use optional flag variables with loops to identify when to begin or stop certain code

– often used in conjunction with accumulator variables.

[0, 3, 2]

3. Observe the following python program:

a. Examine the code above. What is the output of this program? Trace through the values as

they change:
i → range(1,5): [____,____,____,____] j → range(1,4): [____,____,____]

 i j b_str

Before the outer loop: ___________________________

Iteration 1: _________ _________ ___________________________

Iteration 2: _________ _________ ___________________________

Iteration 3: _________ _________ ___________________________

Iteration 4: _________ _________ ___________________________

Iteration 5: _________ _________ ___________________________

Iteration 6: _________ _________ ___________________________

Iteration 7: _________ _________ ___________________________

Iteration 8: _________ _________ ___________________________

Iteration 9: _________ _________ ___________________________

Iteration 10: _________ _________ ___________________________

Iteration 11: _________ _________ ___________________________

Iteration 12: _________ _________ ___________________________

Final value ___________________________

Application Questions: Use the Python Interpreter to check your work

1. If you were asked to create a Python function that returned the adjacent

rectangle, you could easily do it with a series of concatenation statements. You

can also create it with a for-each loop and accumulator variable with far fewer

lines of code. This exercise will go through the steps to create a function that

will return and then print similar output but allows the user to determine the

length and width of the figure when they execute the program.

a. Create a function, make_rectangle, that takes a string parameter, width,

representing the width of the rectangle in characters (i.e., if width is "wwww" the

function should return "****"). Use a for-each loop to accumulate the string of

asterisks of the correct width. Return this string.

 b_str = ''

 for i in range(1, 5):

 for j in range(1, 4):

 b_str = b_str + str(i * j) + "\t"

 b_str = b_str + "\n"

b. You want the function to create several lines of asterisks. Extend the code in (a) to take a

second parameter, height, that is a string representing the height of the rectangle in

characters (i.e., if height is "hhh" the function should return a string with 3 rows of

asterisks). Use an “outer” loop to print that many lines of asterisks. Write the revised

code below (Hint: "\n" is the character for newline):
def make_rectangle()

c. Write a main block of code that prompts the user for strings representing the desired

height and width of the rectangle, using characters (i.e., "www" and "hh" will produce a

rectangle 3 asterisks wide and two rows tall). Print the rectangle of asterisks.
def main():

d. Where might you modify your code to test that the width of the rectangle will be less than

10, and display an error message if not? Write the code below:

2. Use two for..loops with range() to print the following output:

3. Use a nested for..loop to print the following output, using range():

$

$$

$$$

$$$$

*

**
