
Name: _______________________________________ Partner: ________________________________
Python Activity 12: Lists

Holding and accessing collections of objects helps code scale.

Concept Model:

Examine the following partially completed code:

Concept Model
def print_month(num_month):

 # num_month is a number between 0 & 11, representing Jan - Dec

 str_month = '??'

 # What code needs to go here?

 print("The month is", str_month)

CM1. If we wanted the function print_month to display a string representation of the

numerical month stored in num_month (e.g., print_month(0) displays January,

print_month(3) displays April), summarize what code we would have to write to make

this possible, using only concepts we’ve already learned:

CM2. Will this approach scale for larger problems (say, if we wanted a similar mapping between

the numerical year 1999 and the string representation, nineteen ninety-nine, and all

other years up to now)?

Learning Objectives

Students will be able to:

Content:

• Define a list

• Identify elements of a list

• Explain the purpose of positive and negative indexes in a list.

• Explain how to access individual elements of a list as well as subsequences of the list

• Explain how to find if an item is contained within a list

Process:

• Write code that prints a list, finds the length of a list, slices a list

• Write code that determines if an item is or is not contained in a sequence

• Write code that adds items to a list through concatenation

Prior Knowledge

• Variables, string literals, types, conditionals, functions

Critical Thinking Questions:
FYI: A sequence is an object that stores multiple data items in a contiguous/ordered manner. Two types

of sequences are strings and lists. Each value stored in a list is called an element.

1. Examine the sample lists below.

Sample Lists in Python
 digits = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
 fruits = ["apple", "banana", "cantelope", "pear", "orange"]

 student_data = ["Jones", 10234, 3.5, "Brown", True, 2.8, 'i']

a. How many elements does the list named digits contain? ____________________

b. What type of data is stored in each list (String, numeric)?

• digits list:

 __

• fruits list:

 __

• student_data list:

 __

c. How would you define a list?

d. Why might a list be useful?

2. Many of the operators we know for strings (a sequence of characters) are similar for lists

(a sequence of objects)! As a review of the string operators, draw lines between the left column

and the right, matching the sequence operations we have learned that work for strings, to the

result of those operations:

Operation Result

 seq[i] True if x is contained within seq

 seq[startIncl : endExcl] slice of seq: startIncl to endExcl with step step

 seq[startIncl : endExcl : step] the i'th item of seq, when starting with 0

 len(seq) slice of seq from startIncl to endExcl

 seq1 + seq2 False if x is contained within seq

 x in seq length of seq

 x not in seq The concatenation of seq1 and seq2

3. Knowing these string operators, map the python code on the left to the expected output

on the right. Assume fruits = ["apple", "banana", "cantelope", "pear", "orange"]

Operation Result
 fruits[1] ['apple','banana', 'cantelope', 'pear', 'orange', 'strawberry']

fruits[-2] ['orange', 'pear', 'cantelope', 'banana', 'apple']

 fruits[1:4] False

 fruits[0:5:2] True

 fruits[::-1] 'pear'

 len(fruits) ['banana', 'cantelope', 'pear']

 fruits + ['strawberry'] 'banana'

 'coconut' in fruits ['apple', 'cantelope', 'orange']

 'lemon' not in fruits 5

3. Examine the following program and its output:

Program : Output:

a. Draw lines between the print() statements in the program and their associated

output.

b. What is stored in combine?

__

legumes = ["beans", "peas"]

vegs = ["asparagus", "broccoli", "carrot"]

combine = legumes + vegs

print(combine)

print(legumes)

['beans', 'peas', 'asparagus', 'broccoli', 'carrot']

['beans', 'peas']

c. At the end of the code, what is stored in legumes? How has it changed from the

beginning?

__

d. At the end of the code, what is stored in vegs? How has it changed from the

beginning?

__

FYI: The Concatenation Operator + allows you to append one sequence, such as Lists or strings, to

the end of another sequence of the same type. It returns the new, appended sequence.

3. Examine the following program and its output that continues from the previous code:

Program : Output:

a. What type of variable is vegs?

__

What type of variable is ["kale"]?

__

What type of variable is "kale"?

__

Why might we get a TypeError: can only concatenate list (not

"str") to list if we write vegs + "kale" rather than

vegs + ["kale"]?

__

b. At the end of the code, what is stored in vegs? How has it changed from the

beginning?

__

c. How does the value of vegs change after the line vegs + ["kale"]?

__

Why might we have to write vegs = vegs + ["beet"] rather than just

vegs + ["kale"] to update the value stored in vegs?

__

d. Write a single line of code that adds the strings "lentil" and "chickpea" to

legumes.

__

vegs + ["kale"]

print(vegs)

vegs = vegs + ["beet"]

print(vegs)

['asparagus', 'broccoli', 'carrot']

['asparagus', 'broccoli', 'carrot', 'beet']

Application Questions: Use the Python Interpreter to check your work

1. Create a program that prints a given list, prompts the user for a name and average, adds

the new information to the list and prints the new list. It should produce output similar to

the following:

 __

 __

 __

 __

 __

 __

 __

 __

__

2. Revise the previous program so that it allows the user to enter the name of a person and an

average, but only if that person does not already exist in the list.

 __

 __

 __

3. Create a function, extract_palindromes, that takes a list of str, word_list, as a

parameter and returns a list of only the palindromes in that list (words that are the same

backwards and forwards). Begin by decomposing the problem into smaller steps.

