
CS134 Lecture:
Wrapping Up

Announcements & Logistics
• Lab 10 due Wed/Thurs at 10 pm

• GREAT practice for the final exam!!

• CS134 Scheduled Final: Wednesday, Dec 11, 9:30 AM

• Room: Wachenheim B11 / Bronfman Auditorium

• CS134 Review Session before Finals:

• Monday, December 9, 10a-12p

• Room: TPL203

• No TA Help Hours next week
• Instructor Help Hours TBD

Do You Have Any Questions?

Announcements & Logistics
• Final Exam: Dec 11, 9:30 am in Wachenheim B11

• 2 hour closed book exam
• Cumulative w/ more weight on topics post-midterm topics
• Practice problems are posted; review lecture slides, lecture videos,

POGILs, homework, and labs
• Might consider reviewing 'Think Python' textbook on 'Resources'

page on Course Website for specific reference questions
• Exam Format will be very similar to midterm: open-ended + short

answer mix

Do You Have Any Questions?

Last Time: Java vs. Python
• Python is a loosely typed language

• Why good? Makes it easy to get started, less cumbersome / overhead
• Why bad? Can lead to unexpected runtime errors, Python tries to

"overcorrect" type issues whenever possible leading to unexpected
behavior

• Java is a strongly-typed language: all variable types need to be
declared at initialization and cannot change types
• Why good? Can catch most type errors during compilation!
• Why bad? Makes the code more verbose/requires more "boilerplate"

What we learned in this class isn't specific
to Python, it applies to Java (and other

languages) as well!

Today's Plan
• Learn about a cool Python library to do cool things with web data!

• Summarize main topics covered in CS 134 this semester

• How to do more CS stuff on your own/at Williams

• Complete course evals

• We’ll pause lecture for you to fill out course evals

Optional Fun Stuff:
Python & Webpages

What is a
webpage?

“Ten movies streaming across that, that Internet, and what
happens to your own personal Internet? I just the other day
got... an Internet was sent by my staff at 10 o'clock in the
morning on Friday. I got it yesterday [Tuesday]. Why? Because it
got tangled up with all these things going on the Internet
commercially. [...]

They want to deliver vast amounts of information over the
Internet. And again, the Internet is not something that you just
dump something on. It's not a big truck.
It's a series of tubes.”

US Senator Ted Stevens (R-Alaska) in 2006, Head of the committee regulating Net Neutrality

...not quite!

https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90

A webpage is just a publicly accessible file on a
computer somewhere.

Learn more: https://youtu.be/AEaKrq3SpW8

https://youtu.be/AEaKrq3SpW8

HTML
• HyperText Markup Language
• Specifies how to format text for your Internet Browser

• Different tags/symbols specify how computer should display text

• HTML is a markup language, not a programming language!

Try This...
• Right-click a webpage

• "View Page Source"

http://cs.williams.edu/~cs134/basic.html

Try This...

• Copy/Paste/Save with .html file extension in a text editor (like VS Code)

<html>
 <head>
 <title>CS134 Simple Page</title>
 </head>

 <body>
 Hello CS 134! This is a simple web page.

 Looking for Bill? Click here.

 Looking for Iris? Click here.

 Looking for Pixel? Click
 here.

 Here are some images.

 </body>

</html>

http://www.cs.williams.edu/~jannen

Try This...

• Make a small change. Save and view file in a web browser.

<html>
 <head>
 <title>CS134 Simple Page</title>
 </head>

 <body>
 Hello CS 134! This is a simple web page.

 Looking for Bill? Click here.

 Looking for Iris? Click here.

 Looking for Pixel? Click
 here.

 Here are some images.

 </body>

</html>

Try This...

HTML
• <h1>Text goes here</h1> ➡ Makes a level1 heading

• Guess: there's also an <h2></h2>, and <h3></h3>, and ...

• Text goes here ➡ Makes the text bold (also)

• <i>Text goes here</i> ➡ Makes the text italic (also)

• Link Text here ➡ Makes a hyperlink

• Text goes here ➡ Changes the font

• Text goes here ➡ Changes font size

• Text goes here ➡ Changes font color

• <p>Text goes here</p> ➡ Paragraph definition (~2 newlines)

•
 ➡ Line break (~1 newline)

http://url-here.edu

HTML Header
• <html> ➡ Defines what markup language is being used

• <head> Text & Tags in here are part of the header </head>

• <title> This title appears in the web browser </title>

• <body> Text & Tags in here are part of the body text </body>

• </html> ➡ Ends HTML file

<html>
 <head>
 <title>CS134 Simple Page</title>
 </head>

 <body>
 Hello CS 134! This is a simple web page.

 Looking for Bill? Click here.

 Looking for Iris? Click here.

http://www.cs.williams.edu/~jannen

Pulling Source Code from Web Pages
terminal% pip install requests
>>> import requests
>>> r = requests.get('http://www.cs.williams.edu/~cs134/basic.html')

>>> r.text

'<html>\n <head>\n <title>CS134 Simple Page</title>\n </
head>\n\n <body>\n Hello CS 134! This is a simple web page.
\n\n

\n Looking for Bill? Click <a href="http://
www.cs.williams.edu/~jannen">here.\n\n

\n
Looking for Iris? Click <a href="http://www.cs.williams.edu/
~iris">here.\n\n

\n Looking for Pixel? Click <a
href="https://www.cs.williams.edu/~iris/website/img/
HAILab.jpg">here.\n\n

\n Here are some images.
\n\n

\n <img src="labs/images/img_wllmsLogo.png"
alt="williams seal">\n\n

\n <img src="labs/images/
img_courseLogo.jpg" alt="cs134">\n\n

\n <img
src="labs/images/img_spaceCow.png" alt="space cow">\n\n </
body>\n\n</html>\n \n\n \n'

http://docs.python-requests.org/en/master/user/quickstart/

http://www.cs.williams.edu/~jannen
http://www.cs.williams.edu/~jannen
http://docs.python-requests.org/en/master/user/quickstart/

Processing Source Code from Web Pages
• If you want to parse the HTML text from a string, the

Beautiful Soup module is recommended:
• https://beautiful-soup-4.readthedocs.io/en/latest/

• terminal% pip install beautifulsoup4

Processing Source Code from Web Pages
>>> from bs4 import BeautifulSoup
>>> soup = BeautifulSoup(r.text, 'html.parser')
>>> print(soup.prettify())

<html>
 <head>
 <title>
 CS134 Simple Page
 </title>
 </head>
 <body>
 Hello CS 134! This is a simple web page.

 Looking for Bill? Click

 here

 .

 Looking for Iris? Click

 here

http://www.cs.williams.edu/~jannen

Processing Source Code from Web Pages
>>> soup.title

<title>CS134 Simple Page</title>

>>> soup.title.name

'title'

>>> soup.title.string

'CS134 Simple Page'

>>> soup.title.parent.name

'head'

>>> soup.img

Processing Source Code from Web Pages
>>> soup.a

here</
a>

>>> soup.find_all('a')

[here,
 here,
 <a href="https://www.cs.williams.edu/~iris/website/img/
HAILab.jpg">here]

http://www.cs.williams.edu/~jannen

Extracting All URLs
for link in soup.find_all('a'):
 print(link.get("href"))

http://www.cs.williams.edu/~jannen
http://www.cs.williams.edu/~iris
https://www.cs.williams.edu/~iris/website/img/HAILab.jpg

http://www.cs.williams.edu/~jannen

Extracting All Image alt text
for image in soup.find_all('img'):
 print(image.get("alt"))

williams seal
cs134
space cow

See beautifulsoup4 documentation

Lots more beautifulsoup4 can do!
Learning the importance of documentation!

https://beautiful-soup-4.readthedocs.io/en/latest/

https://beautiful-soup-4.readthedocs.io/en/latest/

What are we doing?!
• So now we can scrape HTML data from webpages...
• ...and parse the data so we can pull out meaningful text...

• Maybe you're:
• building a web crawler, documenting all the webpages on the Internet so

their text can be searchable...
• a sports recruiter and you need to pull wins/losses data from local amateur

leagues...
• a designer building software to make stock market transactions based on

the weather...
• a PR firm tracking in vivo mentions of particular products or brands
• a humanitarian gathering evidence on organized crime groups
• an AI researcher trying to generate new paint color names

Why might we want to pull
source code from the web?

https://arstechnica.com/information-technology/2017/05/an-ai-invented-a-bunch-of-new-paint-colors-that-are-hilariously-wrong/

What are we doing?!
• Python has lots more accessible modules that do other fun

things:
• Play music
• Process images
• Generate text
• Statistical operations
• Among others!

from nltk import *
trigrams = list(ngrams(tokens, 3))
trigram_model = defaultdict(Counter)
for trigram in trigrams:
 trigram_model[(trigram[0], trigram[1])][trigram[2]] += 1
def generate_text(starting_words, model, num_words=20):
 sentence = list(starting_words)
 for _ in range(num_words):
 next_word = model[tuple(sentence[-2:])].most_common(1)[0][0]
 sentence.append(next_word)
 return ' '.join(sentence)

import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list("ABCD"))
s.value_counts()

import matplotlib.pyplot as plt
from skimage import data,filters
image = data.coins()
... or any other NumPy array!
edges = filters.sobel(image)
plt.imshow(edges, cmap='gray')

from music import *
create a middle C half note
note = Note(C4, HN)
Play.midi(note) # and play it!

What are we doing?!
• Python has lots more accessible modules that do other fun

things:
• Play music
• Process images
• Generate text
• Statistical operations
• Among others!

from nltk import *
trigrams = list(ngrams(tokens, 3))
trigram_model = defaultdict(Counter)
for trigram in trigrams:
 trigram_model[(trigram[0], trigram[1])][trigram[2]] += 1
def generate_text(starting_words, model, num_words=20):
 sentence = list(starting_words)
 for _ in range(num_words):
 next_word = model[tuple(sentence[-2:])].most_common(1)[0][0]
 sentence.append(next_word)
 return ' '.join(sentence)

import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list("ABCD"))
s.value_counts()

import matplotlib.pyplot as plt
from skimage import data,filters
image = data.coins()
... or any other NumPy array!
edges = filters.sobel(image)
plt.imshow(edges, cmap='gray')

from music import *
create a middle C half note
note = Note(C4, HN)
Play.midi(note) # and play it!

Arcade

seaborns

pyduino

pytorch

Take-away
• Python is a powerful tool that:

• Processes, manipulates, organizes data
• Accesses data
• Creates beautiful things: art, solutions, puzzles, ...
• Expands human capabilities

• But also: communicates complex computational ideas

Course Wrap-Up

Remember when...
• We first learned input, casting to float,

functions, and conditionals?!
def main():
 original_price = input("Enter the original cost of the item: ")
 sale_price = input("Enter the sale price: ")

 percent_reduced = percent_off(float(original_price), float(sale_price))

 print("Original price: $" + original_price)
 print("Sale price: $" + sale_price)
 print("Percent Off: " + str(percent_reduced) + "%")

 if percent_reduced >= 50:
 print("You got a great sale!")

def percent_off(orig, sa):
 return int((orig - sa)/orig * 100)

main()

Now we know how to
combine these

concepts with even
more to solve

complex problems!

CS134 in a Nutshell
• We have covered many topics this semester!

• We started out learning the basics of programming, and we used python as our
medium to explore these building blocks

• Pre-midterm

• Types & Operators (int, float, %, //, /, concatenation, etc)

• Functions (variable scope, return vs print, defining vs calling functions)

• Booleans and conditionals (if elif else, >, <, ==, not, and, or)

• Iteration: for loops, while loops, nested loops, accumulation variables in loops

• Sequences: strings (operators, in/not in, iteration, etc) , lists (operators,
indexing, slicing, etc), ranges, tuples, lists of lists

• Mutability and aliasing

• Built-in python data structures: lists, tuples and sets

CS134 in a Nutshell
• Then we moved on to more advanced CS topics
• Post-midterm

• New data structure: dictionaries

• File reading: with open(…) as, processing file lines in a loop
• Recursion: recursive methods and classes

• Graphical recursion with turtle graphics library
• Classes, Objects, and OOP

• attributes, special methods, getters, setters, inheritance
• “Bigger” OOP Examples: Autocomplete, Tic Tac Toe, Boggle, LinkedList
• Special methods as well as sorted() with optional key argument

• Advanced topics:
• Efficiency (Big-O), Linked Lists, Searching and sorting

Takeaway: What is Computer Science?
• Computer science computer programming!
• Computer science is the study of what computers [can]

do; programming is the practice of making computers do useful things
• Programming is a big part of computer science, but there is much

more to CS than just writing programs!
• A big part of CS (and CS134) is computational thinking

≠

https://www.edsurge.com/news/2015-12-02-computer-science-goes-beyond-coding

Biggest Takeaway: Computational Thinking
• Computational thinking allows us to develop solutions for complex problems. We

present these solutions such that a computer, a human, or both, can understand.

• Four pillars of CT:

• Decomposition - break down a complex problem into smaller parts

• Pattern recognition – look for similarities among and within problems

• Abstraction – focus on important information only, ignore irrelevant details

• Algorithms - develop a step-by-step solution to the problem

• A computer can performs billion of operations per second, but computers only
do exactly what you tell them to do!

• In this course we will learn learned how to 1) use CT to develop algorithms
for solving problems, and 2) implement our algorithms through computer
programs

CS134 Labs: Practice with Computational Thinking

• Labs were designed to make look at real life commonplace processes
through a computational lens

These Concepts Carry Over
• We used Python as a way to practice fundamentals of CS

• Decomposition, Pattern recognition, Abstraction and Algorithms
• Programming languages just give us a way to express our logic

• If the language changes, this expression changes (syntax)

• But the outline of the solution (the logical steps) stay the same!

• Adapting to a new language is just a matter of getting familiar with its
syntax, main structure and quirks

• Let's discuss this through high level comparison of Python vs Java

Beyond CS134

Beyond CS134
• For those interested in continuing on the CS path:

• Obvious next step: take CS136 + Math 200

• Practice more Java over winter break: redo our labs in Java!

• In general, if you enjoy puzzles and programming, there are many ways
to practice these skills:

• Try Project Euler : Math + CS puzzles

• MIT course: The missing semester of your CS eduction

• Staying connected with CS as non-majors:

• Can still take CS136 and other courses!

• Winter Study: Unix & Software Tools and Designing for People

• Come talk to us for more ideas!

https://projecteuler.net/
https://missing.csail.mit.edu/

What's Next?
• If you liked coming up with your own algorithms and you enjoyed the

"puzzle" aspects of labs, CS 256 is for you!
• How to: apply different algorithmic paradigms and prove that algorithms

are correct and efficient
• If you're curious how computers work, how data is represented in

memory, how software and hardware interface, CS 237 is for you!
• How to: optimize the practical parts of your program, get the most out

of your physical computing resources, become a "hacker"
• If you enjoyed the process of learning python and want to better

understand the design choices of the language itself, CS 334 is for
you!
• How to: program in different language paradigms and pick the best

language for the job (or design your own!)

Takeaways
• You all should be proud of how much you’ve learned!
• Computer Science is all about breaking down the problem and figuring

out how to put the pieces together

• This problem-solving mindset transcends languages/ majors, and
will help you throughout your life!

• Thank you for your patience and enthusiasm throughout the course

WE MADE IT!

Student Course Surveys

Course Evals Logistics
• Two parts: (1) SCS form, (2) Blue sheets (both online)
• Your feedback helps us improve the course and shape the CS

curriculum
• Your responses are confidential and we only receive anonymized

comments after we submit our grades
• We appreciate your constructive feedback

• SCS forms are used for evaluation, blue sheets are open-ended
comments directed only to your instructor

To access the online evaluations, log into Glow (glow.williams.edu) using your
regular Williams username and password (the same ones you use for your
Williams email account). On your Glow dashboard you’ll see a course called
“Course Evaluations.” Click on this and then follow the instructions you
see on the screen. If you have trouble finding the evaluation, you can ask a
neighbor for help or reach out to ir@williams.edu.

The end!

