
CS134:
List Comprehensions & Tuples

Announcements & Logistics
• No Lab this week!

• HW 11 due tonight at 10 pm (on Gradescope)

• Happy Thanksgiving!!

Do You Have Any Questions?

Last Time
• We discussed two sorting algorithms

• Selection sort

• Simple-to-implement sorting algorithm,

• Merge sort

• An optimal divide-and-conquer sorting algorithm,

O(n2)

O(n log2 n)

Today’s Plan
• Introduce some nifty pythonic ways of doing things we've done

previously:

• List comprehensions: a quick way to make simple lists!

• Tuples: an immutable sequence that's convenient for swapping values,
etc

• Two more lectures after break:

• Comparison of Python vs Java

• OOP Wrap up and review

List Comprehensions

List Patterns: Map & Filter
• When using lists and loops, there are common patterns that appear

• Mapping: Iterate over a list and return a new list that results from
performing an operation on each element of original list

• E.g., take a list of integers num_lst and return a new list which
contains the square of each number in num_lst

• Filtering: Iterate over a list and return a new list that results from
keeping only elements of the original list that satisfy some condition

• E.g., take a list of integers num_lst and return a new list which
contains only the even numbers in num_lst

• Python allows us to implement these patterns succinctly using
list comprehensions

List Comprehensions

• Important points:
• List comprehensions always start with an expression (even a

variable name like “item” is an expression!)

• We never use += or .append() inside of list comprehensions

• We can combine mapping and filtering into a single list
comprehension:

Mapping List Comprehension (perform operation on each element)
new_lst = [expression for item in sequence]

Filtering List Comprehension (only keep some elements)
new_lst = [item for item in sequence if conditional]

new_lst = [expression for item in sequence if conditional]
"Combo" Comprehension (perform operation on some elements)

result = [n**2 for n in range(10) if n%2 == 0]

result = []
for n in range(10):
 if n%2 == 0:
 result += [n**2]

Dissecting List Comprehensions

Task: Extract even numbers
from a range and create a

list of their squares.

Using a list
comprehension:

new_lst = [expression for item in sequence if conditional]

expression item sequence conditional

All list comprehensions can be rewritten using a for loop!

Using List Comprehensions
• List comprehensions are convenient when converting between lists

of <types>:
• Recall our Book class from before:

• Example: How to convert book_lst from a list of Books to a list of
string titles?
>>> book_lst = [Book("LOTR"), Book("ParOfSower"), Book("Emma")]

class Book:
 def __init__(self, title):
 self._title = title
 def __str__():
 return "'" + self._title + "'"

Using List Comprehensions
• List comprehensions are convenient when converting between lists

of <types>:
• Recall our Book class from before:

• Example: How to convert book_lst from a list of Books to a list of
string titles?
>>> book_lst = [Book("LOTR"), Book("ParOfSower"), Book("Emma")]

class Book:
 def __init__(self, title):
 self._title = title
 def __str__():
 return "'" + self._title + "'"

 b_strs = []
 for book in book_lst:
 b_strs += [str(book)]

item

sequence

expression

Using List Comprehensions
• List comprehensions are convenient when converting between lists

of <types>:
• Recall our Book class from before:

• Example: How to convert book_lst from a list of Books to a list of
string titles?
>>> book_lst = [Book("LOTR"), Book("ParOfSower"), Book("Emma")]

class Book:
 def __init__(self, title):
 self._title = title
 def __str__():
 return "'" + self._title + "'"

>>> [str(book) for book in book_lst]
['LOTR', 'ParOfSower', 'Emma']

item sequenceexpression

Using List Comprehensions
• List comprehensions are convenient when working with files:

• Recall our superheroes.csv from before:
with open("data/superheroes.csv") as roster:
 lines = []
 for line in roster:
 lines += [line.strip()]

Wonderwoman,Strength,5
Superman,Strength,13
Spiderman,Spidey things,9
Black Panther,Technology,4
Captain Marvel,Strength,4
Starfire,Strength,1
Cyborg,Technology,1
Batman,Justice,23
Robin,Justice,2
Ms. Marvel,Light,0
Jean Grey,Telekenesis,7
Ironman,Technology,9
Forge,Technology,1

• Can now become:
with open("data/superheroes.csv") as roster:
 lines = [line.strip() for line in roster]

• Maybe we only want just the superpowers?

Using List Comprehensions
• List comprehensions are convenient when working with files:

• Recall our superheroes.csv from before:

with open("data/superheroes.csv") as roster:
 powers = []
 for line in roster:
 powers += [line.strip().split(',')[1]]

Wonderwoman,Strength,5
Superman,Strength,13
Spiderman,Spidey things,9
Black Panther,Technology,4
Captain Marvel,Strength,4
Starfire,Strength,1
Cyborg,Technology,1
Batman,Justice,23
Robin,Justice,2
Ms. Marvel,Light,0
Jean Grey,Telekenesis,7
Ironman,Technology,9
Forge,Technology,1

• Maybe we only want just the superpowers:

item

sequence

expression

with open("data/superheroes.csv") as roster:
 powers = [line.strip().split(',')[1] for line in roster]

item

sequence

expression

• Maybe we only want only the superheroes with "man" in their name?

Using List Comprehensions
• List comprehensions are convenient when working with files:

• Recall our superheroes.csv from before:

with open("data/superheroes.csv") as roster:
 old_skool = []
 for line in roster:
 if "man" in get_name(line):
 old_skool += [get_name(line)]

Wonderwoman,Strength,5
Superman,Strength,13
Spiderman,Spidey things,9
Black Panther,Technology,4
Captain Marvel,Strength,4
Starfire,Strength,1
Cyborg,Technology,1
Batman,Justice,23
Robin,Justice,2
Ms. Marvel,Light,0
Jean Grey,Telekenesis,7
Ironman,Technology,9
Forge,Technology,1

• Maybe we only want only the superheroes
with "man" in their name:

item

sequence
expression

conditional
with open("data/superheroes.csv") as roster:
 old_sk = [get_name(line) for line in roster if "man" in get_name(line)]

def get_name(line):
 return line.strip().split(',')[0]

item sequenceexpression conditional

Tuples

Tuples: An Immutable Sequence
• Tuples are an immutable sequence of values (almost like immutable

lists) separated by commas and enclosed within parentheses ()

A tuple of size 1 is called a singleton.
Note the (funky) syntax.

string tuple
>>> names = ("Mark", "Iris", "Lida")

int tuple
>>> primes = (2, 3, 5, 7, 11)

singleton
>>> num = (5,)

parentheses are optional
>>> values = 5, 6

empty tuple
>>> emp = ()

• Tuples, like strings, support any sequence operation that does not
involve mutation: e.g,

• len() function: returns number of elements in tuple

• [] indexing: access specific element

• +, *: tuple concatenation

• [:]: slicing to return subset of tuple (as a new tuple)

• in and not in: check membership

• for loop: iterate over elements in tuple

Tuples as Immutable Sequences

Multiple Assignment and Unpacking
• Tuples support a simple syntax for assigning multiple values at once, and also for

"unpacking" sequence values

>>> a, b = 4, 7

reverse the order of values in tuple

>>> b, a = a, b

tuple assignment to “unpack” list elements

>>> cb_info = ['Charlie Brown', 8, False]

>>> name, age, glasses = cb_info

• Note that the preceding line is just a more concise way of writing:

>>> name = cb_info[0]

>>> age = cb_info[1]

>>> glasses = cb_info[2]

Multiple Return from Functions
• Tuples come in handy when returning multiple values from functions

multiple return values as a tuple
def arithmetic(num1, num2):
 '''Takes two numbers and returns the sum and product'''
 return num1 + num2, num1 * num2

>>> arithmetic(10, 2)

(12, 20)

>>> type(arithmetic(3, 4))

<class 'tuple'>

Conversion between Sequences
• The functions tuple(), list(), and str() convert between sequences

>>> word = "Williamstown"

>>> char_lst = list(word) # string to list

>>> char_lst

['W', 'i', 'l', 'l', 'i', 'a', 'm', 's', 't', 'o', 'w', 'n']

>>> char_tuple = tuple(char_lst) # list to tuple

>>> char_tuple

('W', 'i', 'l', 'l', 'i', 'a', 'm', 's', 't', 'o', 'w', 'n')

>>> list((1, 2, 3, 4, 5)) # tuple to list

[1, 2, 3, 4, 5]

Conversion between Sequences
• The functions tuple(), list(), and str() let us convert

between sequences
• The functions tuple(), list(), and str() convert between sequences

>>> str(('hello', 'world')) # tuple to string

"('hello', 'world')"

>>> num_range = range(12)

>>> list(num_range) # range to list

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

>>> str(list(num_range)) # range to list to string

'[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]'

Other Uses for Tuples?
• Why would we want a data type that looks and acts like a list but is

less flexible?
• Being immutable can be helpful!

• Tuples can be stored in sets
• Tuples can be used as the keys for dictionaries
• If we are representing data that should not change, using a tuple

prevents accidental violations of our program's invariants
• BoggleCube faces represent fixed physical objects
• A mouseclick corresponds to a fixed point on the window
• etc.

Useful String Methods

Useful String Methods
>>> s = " CSCI 134 is great!\n \t"
>>> s.strip()
'CSCI 134 is great!'

>>> lst = ['starry', 'starry', 'night']
>>> stars = '**'.join(lst)
>>> stars
'starry**starry**night'

>>> stars.split('**')
['starry', 'starry', 'night']

>>> "I have {} {} & {} {}".format(2,'cats',1,'dog')
'I have 2 cats & 1 dog.'

Remove whitespace from left/right
sides of the string s

Discover more str methods with pydoc3 str !

Joins all elements from list of str,
lst, using the leading str '**'

Splits all elements from str stars,
using the str argument'**'

Inserts arguments into the {} in the
str instance object.

Other useful Tricks
• Handy Python "tricks"

• Optional print() arguments
• Other comprehensions are possible (sets and dicsts!)
• sys.arg

• Handy Command-line "tricks"
• Pipes (|)
• Redirects (> and >>)
• Background/foreground
•

Takeaways
• Python has lots of built in features for doing things efficiently

• But it's worthwhile to know how to build many of these features
ourselves!

• Tuples are an immutable sequence type that:

• supports all sequence operations such as indexing and slicing

• is useful for argument unpacking, multiple assignments

• is useful as a list-like data type without aliasing issues

• We can change the value of mutable objects such as lists

• You can create a “true” copy of a list using slicing or a list comprehension
new_lst = my_lst[:]
new_lst = [ele for ele in my_lst]

The end!

