List Com

CS |34
rehensions & Tu

dles

Announcements & Logistics

No Lab this week!

HW |1 due tonight at 10 pm (on Gradescope)

Happy Thanksgiving!!

Do You Have Any Questions!?

L ast [Ime

- We discussed two sorting algorithms

» Selection sort
. Simple-to-implement sorting algorithm, O(n?)
* Merge sort

» An optimal divide-and-conquer sorting algorithm, O(n log, n)

Jloday's Plan

Introduce some nifty pythonic ways of doing things we've done
previously:

List comprehensions: a quick way to make simple lists!

- Tuples: an immutable sequence that's convenient for swapping values,
etc

- [wo more lectures after break:

@
v o
» Comparison of Python vs Java Yo 7 \0
+ OOP Wrap up and review \\ QY ‘
© gumm—

L ist Comprehensions

= = 7 \A- -

List Patterns: Map & Filter

When using lists and loops, there are common patterns that appear

Mapping: [terate over a list and return a new list that results from
performing an operation on each element of original list

E.o, take a list of integers num_1st and return a new list which
contains the square of each number in num_1lst

Filtering: Iterate over a list and return a new list that results from
keeping only elements of the original list that satisfy some condition

E.o., take a list of integers num_Lst and return a new list which
contains only the even numbers in num_1st

Python allows us to implement these patterns succinctly using
list comprehensions

List Comprehensions

Mapping List Comprehension (perform operation on each element)
new_lst = [expression for item 1n sequence]

Filtering List Comprehension (only keep some elements)
new_lst = [1tem for item in sequence 1if]

Important points:

List comprehensions always start with an expression (even a
variable name like “1tem” is an expression!)

- We never use += or .append() inside of list comprehensions

* We can combine mapping and filtering into a single list
comprehension:

'Combo" Comprehension (perform operation on some elements)
new_lst = [expression for item in sequence 1if]

Dissecting List Comprehensions

new_lst = [expression for item in sequence 1f

Lt =

; .
lask: Extract even numbers (for n in range(10):
from a range and create a (1f n%2 == 0}

list of their squares. r&sult += (n*x2]

Using a list
comprehensiop:/

result = [(n**Z)@‘or n in range(l@D :(f N%2 == @D

expression item sequence

All list comprehensions can be rewritten using a for loop!

Using List Comprehensions

- List comprehensions are convenient when converting between lists
of <types>:

« Recall our Book class from before:

class Book:
def __init__(self, title):
self._title = title
def __str__():
return "'" + self._title + "'"

»+ Example: How to convert book_1st from a list of Books to a list of

string titles!
>>> book_1lst = [Book("LOTR"), Book("ParOfSower"), Book("Emma")]

Using List Comprehensions

- List comprehensions are convenient when converting between lists
of <types>:

« Recall our Book class from before:

class Book:
def __init__(self, title):
self._title = title
def __str__():
return "'" + self._title + "'"

»+ Example: How to convert book_1st from a list of Books to a list of

string titles!
>>> book_1lst = [Book("LOTR"), Book("ParOfSower"), Book("Emma")]

sequence

b strs = []
for book in book lst:
b _strs += [str(book)]

LAl expression

Using List Comprehensions

- List comprehensions are convenient when converting between lists
of <types>:

« Recall our Book class from before:

class Book:
def __init__(self, title):
self._title = title
def __str__():
return "'" + self._title + "'"

»+ Example: How to convert book_1st from a list of Books to a list of

string titles!
>>> book_1lst = [Book("LOTR"), Book("ParOfSower"), Book("Emma")]

expression item sequence

>>> [str(book) for book in book_ 1st]
['LOTR', 'ParOfSower', 'Emma']

Using List Comprehensions

- List comprehensions are convenient when working with files:

+ Recall our superheroes. csv from before:

Wonderwoman,Strength,5 . . T
Superman,Strength,13 with open("data/superheroes.csv') as roster:
Spiderman,Spidey things,9 lines = []

Black Panther,Technology,4 for line in roster:
Captain Marvel, Strength,4 -

Starfire,Strength,1 lines += [llne.strlp()]
Cyborg,Technology, 1

Batman,Justice, 23

Robin,Justice,?2 « (Can now become:

Ms. Marvel,Light,0
Jean Grey,Telekenesis,?7 with open('"data/superheroes.csv") as roster:

Ironman,Technology,9 - _ : : : .
Forge, Technology, 1 lines = [line.strip() for line in roster]

- Maybe we only want just the superpowers!?

Using List Comprehensions

- List comprehensions are convenient when working with files:

+ Recall our superheroes. csv from before:

Wonderwoman,Strength,5

Superman,Strength,13

Spiderman,Spidey things,9 .

Black Panther,Technology,4 * [Maybe we only want just the superpowers:
Captain Marvel,Strength,4

Starfire,Strength,1 with open('data/superheroes.csv'") as roster:
Cyborg,Technology, 1 powers = [] sequence
Batman, Justice, 23 for line in roster:
Robin,Justice, 2 = 13 : 13 L
Ms. Marvel,Light,@ powers += [line.strip().split("',")[1]]
Jean Grey,Telekenesis,7 item
Ironman,TeChnOIOgy,g expression
Forge,Technology,1

sequence

with open("data/superheroes.csv") as roster:
powers = [line.strip().split(',"')[1] for line in roster]

expression ~item

- Maybe we only want only the superheroes with "man" in their name!

Using List Comprehensions

- List comprehensions are convenient when working with files:

+ Recall our superheroes. csv from before:

Wonderwoman,Strength,5

Superman, Strength, 13 .
Spiderman.Spidey things,o Maybe we only want only the superheroes

Black Panther,Technology,4 with "man" in their name;
Captain Marvel,Strength,4

Starfire,Strength,1 def get_name(llne):

Cyborg, Technology, 1 return line.strip().split("',")[0]
Batman, Justice, 23

Robin, Justice, 2

Ms. Marvel,Light,® with open("data/superheroes.csv") as roster:
Jean Grey,Telekenesis,? Old_S|.<001.= [] sequence .
Ironman,Tﬁchrlmlm.iv-Q __fzor line 1n roster: expression
Forge, Technology, jtem if "man" in get_name(line):

old_skool += [get_name(line)]
conditional

with open("data/superheroes.csv'") as roster:
old_sk = [get_name(line) for line in roster if "man'" in get_name(line)]

expression item sequence ' conditional

fuples

Tuples: An Immutable Sequence

Tuples are an immutable sequence of values (almost like iImmutable
lists) separated by commas and enclosed within parentheses ()

string tuple
>>> names = ("Mark', "Iris", "Lida")

1nt tuple
>>> primes = (2, 3, 5, 7, 11)

S 1ng leton A tuple of size | is called a singleton.
>>> num = (5 ,) Note the (funky) syntax.

parentheses are optional
>>> yalues = 5, 6

empty tuple
>>> emp = ()

Tuples as Immutable Sequences

Tuples, like strings, support any sequence operation that does not

involve mutation; e.g,
len() function: returns number of elements in tuple
[] indexing: access specific element
+, >k tuple concatenation
[:]:slicing to return subset of tuple (as a new tuple)
1n and not 1n:check membership

for Lloop:iterate over elements in tuple

Multiple Assisnment and Unpacking

Tuples support a simple syntax for assigning multiple values at once, and also for
"‘unpacking” sequence values

>> a, b =4, 7
reverse the order of values in tuple
>> b, a=a, b
tuple assignment to “unpack” list elements
>>> cb_info = ['Charlie Brown', 8, Falsel
>>> name, age, glasses = cb_info
Note that the preceding line is just a more concise way of writing:
>>> name = cb_info[0]
>>> age = cb_info[1]

>>> glasses = cb_info[2]

Multiple Return from Functions

uples come In handy when returning multiple values from functions

multiple return values as a tuple

def arithmetic(numl, num2):
'''"Takes two numbers and returns the sum and product'''
return numl + num2, numl * num2

>>> arithmetic(10, 2)
(12, 20)
>>> type(arithmetic(3, 4))

<class 'tuple'>

Conversion between Sequences

- The functions tuple(), List(),and str() convert between sequences
>>> word = "Williamstown"

>>> char_lst = list(word) # string to list

>>> char_1lst

['W', 'i', '1.', '-l.', 'i', 'a', 'm', 'S', 't', 'O', IW', 'n']
>>> char_tuple = tuple(char_1st) # list to tuple

>>> char_tuple

('W', 'i', '1', '1.', 'i', 'a', IITI', 'S', 't', 'O', IW', 'n')
>>> list((1, 2, 3, 4, 5)) # tuple to list

(1, 2, 3, 4, 5]

Conversion between Sequences

The functions tuple(), List(),and str() let us convert
between sequences

- The functions tuple(), List(),and str() convert between sequences
>>> str(('hello', 'world')) # tuple to string
"('hello', 'world')"

>>> num_range = range(12)

>>> list(num_range) # range to list

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

>>> str(list(num_range)) # range to list to string
'‘'le, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]'

Other Uses for Tuples!

Why would we want a data type that looks and acts like a list but Is
less flexible!

Being immutable can be helpful!

- Juples can be stored In sets

- Tuples can be used as the keys for dictionaries

It we are representing data that should not change, using a tuple
prevents accidental violations of our program's invariants

BoggleCube faces represent fixed physical objects

- A mouseclick corresponds to a fixed point on the window

etc.

Usetul String Methods

= = 7 \A- -

Useful String Methods

Discover more str methods with pydoc3 str !
>>> 5 = " CSCI 134 1s great!\n \t"

>>> S.St I"lp() — Remove whitespace from left/right
'CSCI 134 1s great! ' sides of the string S

>>> st = ['starry', 'starry', 'night']
>>> stars = "#k'.join(lst)

>>> stars Joins all elements from list of str,
'starry++starry++night' Ust, using the leading str 'sok'

>>> stars.split('sx")
['starry', 'starry', 'night']

Splits all elements from str stars,
using the str argument'**"

>>> "I have {1} {r & {} {}".format(2, 'cats',1, 'dog")
'T have 2 cats & 1 dog.'

Inserts arguments into the { } in the
STr instance object.

Other useful Tricks

Handy Python "tricks"

Optional print() arguments

Other comprehensions are possible (sets and dicsts!)
* sys.arg
Handy Command-line "tricks"

Pipes (|

Redirects (> and >>)

Background/foreground

lakeaways

- Python has lots of built in features for doing things efficiently

- But it's worthwhile to know how to build many of these features
ourselves!

* Tuples are an immutable sequence type that:

- supports all sequence operations such as indexing and slicing
» Is useful for argument unpacking, multiple assignments

» Is useful as a list-like data type without aliasing issues

VWe can change the value of mutable objects such as lists

You can create a “true”’ copy of a list using slicing or a list comprehension
new_1st = my_Tlst[:]
new_1lst = [ele for ele in my_lst]

=) @ = Ny
=Y A mISI Ry PS/AWE

