
CS134 Lecture:
Sorting

Announcements & Logistics
• HW 11: due Monday
• No Lab next week (Enjoy Thanksgiving break!!!)

• Practice Final Exam w/ sample solutions will be available

• CS134 Scheduled Final: Wednesday, December11, 9:30 AM

• Room: Wachenheim B11

Do You Have Any Questions?

• Explored searching and Big-O notation
• What common patterns lead to which Big-O performance?

Last Time: Efficiency and Search

Today: Searching (and Sorting)
• Discuss some classic sorting algorithms:

• Selection sorting in time

• A brief (high level) discussion of how we can improve it to

• Overview of recursive merge sort algorithm

O(n2)

O(n log n)

Sorting

Sorting
• Problem: Given a sequence of unordered elements, we want to sort

the elements in <<ascending>> order.

• There are many ways to solve this problem!

• Built-in sorting functions/methods in Python

• sorted(): function that returns a new sorted list (clone)

• sort(): list method that mutates and sorts the list

• Today: how do we design our own sorting algorithm?

• Question: What is the best (most efficient) way to sort items?

• We will use Big-O to find out!

n

Selection Sort
• A possible approach to sorting elements in a list/array:

• Find the smallest element and move (swap) it to the first
position

• Repeat: find the second-smallest element and move it to the
second position, and so on

29 10 14 37 1 2

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

29 10 14 37 1 2

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

2910 14 37
21

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

2910 14 37
21

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

• The gold bars represent the sorted portion of the list.

29 1014 371 2

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

• The gold bars represent the sorted portion of the list.

29 1014 371 2

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

• The gold bars represent the sorted portion of the list.

29371 2
10 14

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

• The gold bars represent the sorted portion of the list.

29371 2
10 14

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

• The gold bars represent the sorted portion of the list.

29 371 2
10 14

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

• The gold bars represent the sorted portion of the list.

29 371 2
10 14

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

• The gold bars represent the sorted portion of the list.

29 371 2
10 14

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

• The gold bars represent the sorted portion of the list.

And now we're finally done!

29 371 2
10 14

Selection Sort
Roma Folk Dance

• https://www.youtube.com/watch?
v=Ns4TPTC8whw

https://www.youtube.com/watch?v=Ns4TPTC8whw
https://www.youtube.com/watch?v=Ns4TPTC8whw

Selection Sort
• Strategy: For each index in the list lst, we need to find the min

item in lst[i:] so we can replace lst[i] with that item

• To do this, we need to find the position min_index of the item
that is the minimum in lst[i:]

• Neat trick: how to swap values of variables a and b in one line?

• in-line "tuple" swapping: a, b = b, a

• What about swapping the values at list index i and j in one line?

• lst[i],list[j] = lst[j],lst[i]

i

How do we implement this algorithm?

Selection Sort

def selection_sort(my_lst):
 """Selection sort of a given mutable sequence my_lst,
 sorts my_lst by mutating it. Uses selection sort."""

 # find size
 n = len(my_lst)

 # traverse through all elements
 for i in range(n):

 # find min element in the sublist from index i to end
 min_index = get_min_index(my_lst, i)

 # swap min element with current element at i
 my_lst[i], my_lst[min_index] = my_lst[min_index], my_lst[i]

You will work on this helper
function in Lab 10

Selection Sort

def selection_sort(my_lst):
 """Selection sort of a given mutable sequence my_lst,
 sorts my_lst by mutating it. Uses selection sort."""

 # find size
 n = len(my_lst)

 # traverse through all elements
 for i in range(n):

 # find min element in the sublist from index i to end
 min_index = get_min_index(my_lst, i)

 # swap min element with current element at i
 my_lst[i], my_lst[min_index] = my_lst[min_index], my_lst[i]

Even without an implementation,
can we guess how many steps

does this function need to take?

Selection Sort Analysis
• The helper function get_min_index must iterate through indexes

i to n-1 to find the min item in that range

• When i = 0 this is n steps

• When i = 1 this is n-1 steps

• When i = 2 this is n-2 steps

• And so on, until i = n-1 this is 1 step

• Thus overall number of steps is sum of inner loop steps

• What is this sum? (You will see this in MATH 200 if you take it.)

(n − 1) + (n − 2) + ⋯ + 0 ≤ n + (n − 1) + (n − 2) + ⋯ + 1

Selection Sort Analysis: Visual

Selection Sort Analysis: Algebraic

S = n + (n − 1) + (n − 2) + ⋯ + 2 + 1
S = 1 + 2 + ⋯ + (n − 2) + (n − 1) + n

2S = (n + 1) + (n + 1) + ⋯ + (n + 1) + (n + 1) + (n + 1)

+

2S = (n + 1) ⋅ n
S = (n + 1) ⋅ n ⋅ 1/2

• Total number of steps taken by selection sort is thus:
• O(n(n + 1)/2) = O(n(n + 1)) = O(n2 + n) = O(n2)

How Fast Is Selection Sort?
• Selection sort takes approximately steps!n2

More Efficient Sorting:
Merge Sort

Towards an AlgorithmO(n log n)
• There are other sorting algorithms that compare and rearrange

elements in different ways, but are still steps

• They have fun names like "bubble sort" and "insertion sort", but
they share the general approach of iterating through the unsorted
region of the list to determine the final location for a single
element

• You will discuss (and implement them!) if you take CSCI 136

• Today we want to explore an time sorting algorithm: Merge

sort (Invented by John von Neumann in 1945)

• is the best we can do in a comparison-based sort!

O(n2)

O(n log n)

O(n log n)

Merge Sort: Basic Idea
• If we split the list in half, sorting the left and right half are smaller

versions of the same problem

• To solve the larger problem (sort the full list), we need to combine the
solutions to the two smaller problems (sorted half lists)

• Algorithm:

• (Divide) Recursively sort left and right half

• (Unite) Merge the sorted halves into a single sorted list

lst
m = n//2

0 n = len(lst)

12 2 9 4 11 3 1 7 14 5 13

Merging Sorted Lists
• Problem. Given two sorted lists a and b, how quickly can we merge

them into a single sorted list?

merged list c

a

122 94 11

i

31 7 145 13

b

j

Merging Sorted Lists
Is a[i] <= b[j] ?
• Yes, a[i] appended to c
• No, b[j] appended to c

a

122 94 11

i

31 7 145 13

b

j

merged list ck

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

1

Is a[i] <= b[j] ?
• Yes, a[i] appended to c
• No, b[j] appended to c

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

1

Is a[i] <= b[j] ?
• Yes, a[i] appended to c
• No, b[j] appended to c

2

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

1

Is a[i] <= b[j] ?
• Yes, a[i] appended to c
• No, b[j] appended to c

2

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

1

Is a[i] <= b[j] ?
• Yes, a[i] appended to c
• No, b[j] appended to c

2 3

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list c k

1

Is a[i] <= b[j] ?
• Yes, a[i] appended to c
• No, b[j] appended to c

2 3 54 7 9 11 12 13 14

• Walk through lists maintaining
current position of indices

• Compare and , whichever is
smaller gets put in the spot of

• Merging two sorted lists into one is an
 step algorithm!

• Can use this merge procedure to design
our recursive merge sort algorithm!

a, b, c
i, j, k

a[i] b[j]
c[k]

O(n)

Merging Sorted Lists
def merge(a, b):
 """Merges two sorted lists a and b,
 and returns new merged list c"""
 # initialize variables
 i, j, k = 0, 0, 0
 len_a, len_b = len(a), len(b)
 c = []
 # traverse and populate new list
 while i < len_a and j < len_b:

 if a[i] <= b[j]:
 c.append(a[i])
 i += 1
 else:
 c.append(b[j])
 j += 1

 # handle remaining values
 if i < len_a:
 c.extend(a[i:])

 elif j < len_b:
 c.extend(b[j:])

 return c

• Base case: If list is empty or
contains a single element: it is
already sorted

• Recursive case:
• Recursively sort left and

right halves
• Merge the sorted lists into

a single list and return it
• Question:

• Where is the sorting
actually taking place?

Merge Sort Algorithm
def merge_sort(lst):
 """Given a list lst, returns
 a new list that is lst sorted
 in ascending order."""
 n = len(lst)

 # base case
 if n == 0 or n == 1:
 return lst

 else:
 m = n//2 # middle

 # recurse on left & right half
 sort_lt = merge_sort(lst[:m])
 sort_rt = merge_sort(lst[m:])

 # return merged list
 return merge(sort_lt, sort_rt)

4 11 1 7 5 13

12 2 9 4 11 3 1 7 14 5 13

12 2 9 4 11 3 1 7 14 5 13

Merge Sort Example

12 2 9 4 11 3 1 7 14 5 13

12 2 9 4 11 3 1 7 14 5 13

31 14132 4 5 7 9 11 12

2 12 4 9 11 135 141 3 7

Merge Sort Example

114

4 11 1 7 5 13

1 13512 2 9 3 147

122 94 11 31 7 145 13

Merge Sort: Basic Idea
• If we split the list in half, sorting the left and right half are smaller

versions of the same problem

• Algorithm:

• (Divide) Recursively sort left and right half (splits until all
lists are length 1)

• (Unite) Merge the sorted halves into a single sorted list ()

O(log n)

O(n)

lst
m = n//2

0 n = len(lst)

12 2 9 4 11 3 1 7 14 5 13

O(log n)

Big Oh Comparisons
• Selection sort:

• Merge sort:

O(n2)

O(n log n)

Merge Sort w Transylvanian-Saxon
Folk Dance

• https://www.youtube.com/watch?
v=XaqR3G_NVoo

https://www.youtube.com/watch?v=XaqR3G_NVoo
https://www.youtube.com/watch?v=XaqR3G_NVoo

Until you see "The End"!

Keep going!
Until you see "The End"!

Selection Sort
vs. Merge Sort
in practice

Selection vs Merge Sort in Practice
• Selection sort is and merge sort is time
• How different is the performance in practice?
• Example: word_lst is 12,000 words from the book Pride &

Prejudice

• We'll time our algorithms on the first 100, 500, 1000, 5000, and 10000
words

O(n2) O(n log n)

word_lst = []
with open('prideandprejudice.txt') as book:
 for line in book:
 line = line.strip().split()
 word_lst.extend(line)
print(len(word_lst))

12089

Timing Sort Algorithms
• Base case: If list is empty or contains a single element: it is already

sorted

• Recursive case:
• Recursively sort left and right halves
• Merge the sorted lists into a single list and return it

• Question:

• Where is the sorting actually taking place?

from matplotlib import pyplot as plt
from time import time

def compare_sorts(data):
 list_sizes = [100, 500, 1000, 5000, 10000]
 selection_times = []
 merge_times = []
 pythonsort_times = []

 for size in list_sizes:

 print("size:", size) # debugging
 lst_to_sort = data[:size] # compare times
 lst_to_sort1 = lst_to_sort[:]
 lst_to_sort2 = lst_to_sort[:]
 lst_to_sort3 = lst_to_sort[:]

 selection_start = time()
 selection_sort(lst_to_sort1)
 selection_end = time()
 selection_times.append(selection_end - selection_start)

 merge_start = time()
 merge_sort(lst_to_sort2)
 merge_end = time()
 merge_times.append(merge_end - merge_start)

 pythonsort_start = time()
 lst_to_sort3.sort()
 pythonsort_end = time()
 pythonsort_times.append(pythonsort_end - pythonsort_start)

 # plot lines
 plt.plot(list_sizes, selection_times, label = "selection sort")
 plt.plot(list_sizes, merge_times, label = "merge sort")
 plt.plot(list_sizes, pythonsort_times, label = "python sort")
 plt.xlabel("Size of the list")
 plt.ylabel("Time in seconds")
 plt.legend()
 plt.show()

Let's also compare python's
.sort() method

Timing Sort Algorithms
• Base case: If list is empty or contains a single element: it is already

sorted

• Recursive case:
• Recursively sort left and right halves
• Merge the sorted lists into a single list and return it

• Question:

• Where is the sorting actually taking place?

Remember: running
empirical tests isn't a
vacuum! Background

applications on a machine
will impact runtimes!

Timing Sort Algorithms
Close-up of merge sort vs. python sort

• Python uses a hybrid of merge sort and insertion sort
• Python always optimizes, so built-in libraries typically are the most

efficient
• Often implemented in C, which is faster than python

Searching Algorithms in Practice
• Linear search is and Binary Search is time
• How different is the performance in practice?
• Example: num_lst is 100,000 sorted numbers
• We'll time our algorithms on the first 1000, 5000, 10000, 50000, and

100000 elements

O(n) O(log n)

num_lst = list(range(100000))
print(num_lst[:5])

[0, 1, 2, 3, 4]

Timing Search Algorithms
• Base case: If list is empty or contains a single element: it is already

sorted

• Recursive case:
• Recursively sort left and right halves
• Merge the sorted lists into a single list and return it

• Question:

• Where is the sorting actually taking place?

from matplotlib import pyplot as plt
from time import time

def compare_searches(data, item):
 list_sizes = [1000, 5000, 10000, 50000, 100000]
 linear_times = []
 bsearch_times = []
 pythonin_times = []

 for size in list_sizes:

 print("size:", size) # debugging
 lst_to_search = data[:size] # compare times

 linear_start = time()
 linear_search(lst_to_search, item)
 linear_end = time()
 linear_times.append(linear_end - linear_start)

 bsearch_start = time()
 binary_search_better(lst_to_search, item, 0, size)
 bsearch_end = time()
 bsearch_times.append(bsearch_end - bsearch_start)

 pythonin_start = time()
 item in lst_to_search
 pythonin_end = time()
 pythonin_times.append(pythonin_end - pythonin_start)

 # plot lines
 plt.plot(list_sizes, linear_times, label = "linear search", color="blue")
 plt.plot(list_sizes, bsearch_times, label = "binary search", color="orange")
 plt.plot(list_sizes, pythonin_times, label = "python 'in'", color="green")
 plt.xlabel("Size of the list")
 plt.ylabel("Time in seconds")
 plt.legend()
 plt.show()

Timing Search Algorithms
• Base case: If list is empty or contains a single element: it is already

sorted

• Recursive case:
• Recursively sort left and right halves
• Merge the sorted lists into a single list and return it

• Question:

• Where is the sorting actually taking place?

worst case: look for number not in the list
compare_searches(num_lst, -1)

Timing Sort Algorithms
Comparing Binary Search and python in

• Python doesn't know when a list is sorted, so in must use linear search!

Summary: Searching and Sorting
• We have seen algorithms that are

• : binary search in a sorted list

• : linear searching in an unsorted list

• : merge sort

• : selection sort
• Important to think about

efficiency when writing code!

O(log n)

O(n)

O(n log n)

O(n2)

O(1)

O(n)

O(n2)

O(log n)

O(n log n)

The end!The end!

