
CS134 Lecture:
Searching & Sorting

Announcements & Logistics
• Lab 9 Parts 1 and 2 due today/tomorrow

• Any questions?
• HW 11: Released today, due next Monday
• No Lab next week (Enjoy Thanksgiving break!!!)

• Practice Final Exam w/ sample solutions will be posted in place of lab

• CS134 Scheduled Final: Wednesday, December11, 9:30 AM

• Room: Wachenheim B11

Do You Have Any Questions?

• Defined efficiency as the number of steps taken by algorithm on worst-
case inputs of a given size

• Introduced Big-O notation: captures the rate at which the number of
steps taken by the algorithm grows w.r.t. input size , "as gets large"n n

Last Time: Efficiency

Today: Searching (and Sorting)
• Discuss recursive implementation of binary search

• Discuss some classic sorting algorithms:

• Selection sorting in time

• A brief (high level) discussion of how we can improve it to

• Overview of recursive merge sort algorithm

O(n2)

O(n log n)

Searching in a Sequence

Search Warm-ups
• Search Q1: Given a random input sequence seq, search if a given
item is in the sequence.

• Input: a sequence seq of items and a query item, item

• Output: True if query item is in sequence, else False

• Search Q2: Given a random input sequence seq, determine if any
item in the sequence is a duplicate.

• Input: a sequence seq of items

• Output: True if at least one duplicate pair of items is in sequence, else
False

• (Rules; Use loops or recursion; don't use sets/dictionaries.)

n

n

Let's try to write both functions

• First algorithm: iterate through the items in sequence and compare
each item to query

def linear_search(item, seq):
 for elem in seq:
 if elem == item:
 return True
 return False

Might return early if item is first elem
in seq, but we are interested in the
worst case analysis; worst case is
if item is not in seq at all

Searching in a Sequence 1

5 3 11 ...

0 1 2 3

8

n-1...

45

• In the worst case, we have to walk through the entire sequence

• Overall, the number of steps is linear in . We write this as n O(n)

Searching in a Sequence 1

def linear_search(item, seq):
 for elem in seq:
 if elem == item:
 return True
 return False

Loop runs items
in worst case

n

One equality check per
iteration: assume comparing

elem == item is one step

5 3 11 ...

0 1 2 3

8

n-1...

45

• Second algorithm: nested loop!

• Outer loop iterates through the items in seq and for each item, inner
loop iterates though the items in seq

• Note that the code does not compare any item to itself

def has_duplicates(seq):
 for i in range(len(seq)):
 for j in range(len(seq)):
 if i != j and seq[i] == seq[j]:
 return True
 return False

Searching in a Sequence 2

5 3 11 ...

0 1 2 3

8

n-1...

45

• In the worst case, we have to walk through the entire sequence (
items) once for each item in the sequence (items).

• Overall, the number of steps is quadratic in . We write this as

n
n

n O(n2)

def has_duplicates(seq):
 for i in range(len(seq)):
 for j in range(len(seq)):
 if i != j and seq[i] == seq[j]:
 return True
 return False

Searching in a Sequence 2

5 3 11 ...

0 1 2 3

8

n-1...

45

Each loop runs
times in worst case

n

That's
comparisons for

each of the items
in the worst case.

n

n

Searching in a Sorted Array
• If the list is in sorted order, we can do better than a linear scan. We've

seen that last class.

• Think back to our "guessing game": we want to rule out half of the
remaining items each time we guess

5 7 11 ...

0 1 2 3

3 89

n-1...

How do we search for an item (say 10) in a sorted array?

Searching in a Sorted Array
• Want to maximize the number of elements we rule out (in the worst

case)
• The best we can do is 50%. Why?

• Basic searching strategy for a sorted sequence is called binary search:
• Until we find the target (or run out of items to consider), look at the

item in the middle of sequence
• If the target is smaller than the item at the middle index, recurse

on sequence[0:mid]
• If the target is larger than the item at the middle index, recurse on
sequence[mid+1:]

Let's develop this algorithm recursively!

Binary Search
• Base cases? When are we done?

• If list is too small (or empty) to continue searching, return False

• If item we’re searching for is the middle element, return True

mid = n//2

Check middle

Binary Search
• Recursive case:

• Recurse on left side if item is smaller than middle

• Recurse on right side if item is larger than middle

mid = n//2

If item < a_lst[mid], then need
to search in a_lst[:mid]

Binary Search
• Recursive case:

• Recurse on left side if item is smaller than middle

• Recurse on right side if item is larger than middle

mid = n//2

If item > a_lst[mid], then need
to search in a_lst[mid+1:]

Technically, there is one
small problem with our

implementation. List splicing
is actually O(n)!

def binary_search(seq, item):
 """Assume seq is sorted. If item is
 in seq, return True; else return False."""

 n = len(seq)

 # base case 1
 if n == 0:
 return False

 mid = n // 2
 mid_elem = seq[mid]

 # base case 2
 if item == mid_elem:
 return True

 # recurse on left
 elif item < mid_elem:
 left = seq[:mid]
 return binary_search(left, item)

 # recurse on right
 else:
 right = seq[mid+1:]
 return binary_search(right, item)

Binary Search: Improved

Passing start/end indices as
arguments avoids the need

to splice!

def binary_search_helper(seq, item, start, end):
 '''Recursive helper function used in binary search'''

 # base case 1
 if start > end:
 return False

 mid = (start + end) // 2
 mid_elem = seq[mid]

 if item == mid_elem:
 return True

 # recurse on left
 elif item < mid_elem:
 return binary_search_helper(seq, item, start, mid-1)

 # recurse on right
 else:
 return binary_search_helper(seq, item, mid+1, end)

def binary_search_improved(seq, item):

 return binary_search_helper(seq, item, 0, len(seq)-1)

More on Big Oh

Understanding Big-O
• Notation: often denotes the number of elements (size)

• Constant time or : when an operation does not depend on the
number of elements, e.g.

• Addition/subtraction/multiplication of two values, or defining a
variable etc are all constant time

• Linear time or : when an operation requires time proportional
to the number of elements, e.g.:

for item in seq:  
 <do something>

• Quadratic time or : nested loops are often quadratic, e.g.,
for i in range(n):
 for j in range(n):
 <do something>

n

O(1)

O(n)

O(n2)

• Notation: often denotes the number of elements (size)
• Our goal: understand efficiency of some algorithms at a high level

n

Big-O: Common Functions

O(1)

O(n)

O(n2)

O(log n)

Sorting

Sorting
• Problem: Given a sequence of unordered elements, we need to sort

the elements in ascending order.

• There are many ways to solve this problem!

• Built-in sorting functions/methods in Python

• sorted(): function that returns a new sorted list

• sort(): list method that mutates and sorts the list

• Today: how do we design our own sorting algorithm?

• Question: What is the best (most efficient) way to sort items?

• We will use Big-O to find out!

n

Selection Sort
• A possible approach to sorting elements in a list/array:

• Find the smallest element and move (swap) it to the first
position

• Repeat: find the second-smallest element and move it to the
second position, and so on

29 10 14 37 1 2

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

29 10 14 37 1 2

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

2910 14 37
21

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

2910 14 37
21

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

• The gold bars represent the sorted portion of the list.

29 1014 371 2

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

• The gold bars represent the sorted portion of the list.

29 1014 371 2

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

• The gold bars represent the sorted portion of the list.

29371 2
10 14

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

• The gold bars represent the sorted portion of the list.

29371 2
10 14

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

• The gold bars represent the sorted portion of the list.

29 371 2
10 14

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

• The gold bars represent the sorted portion of the list.

29 371 2
10 14

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

• The gold bars represent the sorted portion of the list.

29 371 2
10 14

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

• The gold bars represent the sorted portion of the list.

And now we're finally done!

29 371 2
10 14

Selection Sort
Roma Folk Dance

• https://www.youtube.com/watch?
v=Ns4TPTC8whw

https://www.youtube.com/watch?v=Ns4TPTC8whw
https://www.youtube.com/watch?v=Ns4TPTC8whw

Selection Sort
• Generalize: For each index in the list lst, we need to find the min

item in lst[i:] so we can replace lst[i] with that item

• In fact we need to find the position min_index of the item that is
the minimum in lst[i:]

• Neat trick: how to swap values of variables a and b in one line?

• in-line "tuple" swapping: a, b = b, a

i

How do we implement this algorithm?

Selection Sort

def selection_sort(my_lst):
 """Selection sort of a given mutable sequence my_lst,
 sorts my_lst by mutating it. Uses selection sort."""

 # find size
 n = len(my_lst)

 # traverse through all elements
 for i in range(n):

 # find min element in the sublist from index i+1 to end

 min_index = get_min_index(my_lst, i)

 # swap min element with current element at i
 my_lst[i], my_lst[min_index] = my_lst[min_index], my_lst[i]

You will work on this helper
function in Lab 10

Selection Sort

def selection_sort(my_lst):
 """Selection sort of a given mutable sequence my_lst,
 sorts my_lst by mutating it. Uses selection sort."""

 # find size
 n = len(my_lst)

 # traverse through all elements
 for i in range(n):

 # find min element in the sublist from index i+1 to end

 min_index = get_min_index(my_lst, i)

 # swap min element with current element at i
 my_lst[i], my_lst[min_index] = my_lst[min_index], my_lst[i]

Even without an implementation,
can we guess how many steps

does this function need to take?

Selection Sort Analysis
• The helper function get_min_index must iterate through index i

to n to find the min item

• When i = 0 this is n steps

• When i = 1 this is n-1 steps

• When i = 2 this is n-2 steps

• And so on, until i = n-1 this is 1 step

• Thus overall number of steps is sum of inner loop steps

• What is this sum? (You will see this in MATH 200 if you take it.)

(n − 1) + (n − 2) + ⋯ + 0 ≤ n + (n − 1) + (n − 2) + ⋯ + 1

Selection Sort Analysis: Visual

Selection Sort Analysis: Algebraic

S = n + (n − 1) + (n − 2) + ⋯ + 2 + 1
S = 1 + 2 + ⋯ + (n − 2) + (n − 1) + n

2S = (n + 1) + (n + 1) + ⋯ + (n + 1) + (n + 1) + (n + 1)

+

2S = (n + 1) ⋅ n
S = (n + 1) ⋅ n ⋅ 1/2

• Total number of steps taken by selection sort is thus:
• O(n(n + 1)/2) = O(n(n + 1)) = O(n2 + n) = O(n2)

How Fast Is Selection Sort?
• Selection sort takes approximately steps!n2

The end!The end!

