CS 134 Lecture:
Searching & Sorting

=) ../ @ m \ /e
=Y A mISI Ry PS/AWE

Announcements & Logistics

- Lab 9 Parts | and 2 due today/tomorrow

 Any questions!?

- HW | |: Released today, due next Monday

- No Lab next week (Enjoy Thanksgiving breakl!l)

» Practice Final Exam w/ sample solutions will be posted in place of lab
CS134 Scheduled Final: Wednesday, Decemberl |, 9:30 AM
Room: Wachenheim Bl |

Do You Have Any Questions?

Last [ime: Efficiency

- Defined efficiency as the number of steps taken by algorithm on worst-
case Inputs of a given size

* Introduced Big-O notation: captures the rate at which the number of
steps taken by the algorithm grows w.rit. input size n, "as n gets large”

O(n?)

O(n)

Time —»

O(1)

Number of Elements —

JToday: Searching (and Sorting)

- Discuss recursive implementation of binary search

» Discuss some classic sorting algorithms:

- Selection sorting In O(nz) time

- A brief (high level) discussion of how we can improve It to

O(nlogn)
1 ‘
9N 0
S \0
d
\‘ >)|
0 g

- Overview of recursive merge sort algorithm

Searching In a Sequence

= = 7 \A- -

Search Warm-ups

Search QI: Given a random Input sequence S€(, search if a given

1tem is in the sequence.
Input: a sequence seq of n items and a query item, 1tem
Output: True If query item is In sequence, else False

Search Q2: Given a random input sequence S€(, determine If any
item In the sequence Is a duplicate.

Input: a sequence S€(q of n items

Output: True If at least one duplicate pair of items Is In sequence, else

False

(Rules; Use loops or recursion; don't use sets/dictionaries.)

Let's try to write both functions

Searching In a Sequence |

- First algorithm: terate through the items in sequence and compare

each ritem to query

def linear_search(item, seq):

for elem in seq:

1f elem == 1tem:

return True

return False

>

Might return early If item is first elem
In seq, but we are interested In the
worst case analysis; worst case Is
if tem Is not In seq at all

Nn- |

Searching In a Sequence |

In the worst case, we have to walk through the entire sequence

Overall, the number of steps is linear in n. We write this as O(n)

def linear _search(item,

seq):

for elem in seq: —

1f elem == 1tem:

return True

return False

Loop runs i items
IN Worst case

\‘

One equality check per
iteration: assume comparing
elem == item Is one step

DS E

Searching In a Sequence 2

Second algorithm: nested loop!

Outer loop Iterates through the items in Seq and for each item, inner

loop rterates though the items in Seq

Note that the code does not compare any ritem to itself

def has_duplicates(seq):
for 1 in range(len(seq)):
for j in range(len(seq)):
if 1 !'= j and seqli] == seqljl:
return True
return False

Searching In a Sequence 2

» In the worst case, we have to walk through the entire sequence (n

items) once for each item In the sequence (n rtems).

. Overall, the number of steps is quadratic in 7. We write this as O(n?)

def has_duplicates(seq):
for i in range(len(seq)): Each loop runs n
for j in range(len(seq)): times In worst case
if 1 !'= j and seqli] == seqljl:
return True

return False
That's n

comparisons for

each of the n items
INn the worst case.

Searching In a Sorted Array

« |f the list Is In sorted order, we can do better than a linear scan.We've

seen that last class.

» Think back to our "guessing game"; we want to rule out half of the
remaining rtems each time we guess

How do we search for an item (say 10) in a sorted array?

Searching In a Sorted Array

Want to maximize the number of elements we rule out (in the worst
case)

 The best we can do 1s 50%. Why!
Basic searching strategy for a sorted sequence is called binary search:

Until we find the target (or run out of items to consider), look at the
tem In the middle of Sequence

It the target Is smaller than the item at the middle index, recurse
on sequence[@:mid]

It the target is larger than the item at the middle index, recurse on
sequence[mid+1:]

Let's develop this algorithm recursively!

Binary Search

Base cases! VWhen are we done!
T list 1s too small (or empty) to continue searching, return False

It tem we're searching for Is the middle element, return True

Check middle

v
B

mid = n//2

Binary Search

Recursive case:
Recurse on left side if item 1s smaller than middle

Recurse on right side If item is larger than middle

~\

If item < a_lst[mid], then need

to search in a_Ist[:mid] x

mid = n//2

Binary Search

Recursive case:
Recurse on left side if item 1s smaller than middle

Recurse on right side If item is larger than middle

()

If item > a_Ist[mid], then need
to search in a_|Ist[mid+1:]

‘ N\
I

mid = n//2

def binary_search(seq, item):
"HHUAssume seq i1s sorted. If item 1is
in seq, return True; else return False.

n = len(seq)

?fbﬁsica?e : Technically, there 1s one
return False small problem with our

mid = n // 2 implementation. List splicing

mid_elem = seq[mid] s actually O(n)!

base case 2

if item == mid_elem:
return True

recurse on left
elif item < mid_elem:
left = seq[:mid]
return binary_search(left, item)

recurse on right
else:
right = seqlmid+1:]
return binary_search(right, item)

Binary Search: Improvec

def binary_search_helper(seq, item, start, end):
'''"Recursive helper function used 1in binary search''’

base case 1
if start > end:
return False

Passing start/end indices as
arguments avoids the need
to splicel

mid = (start + end) // 2
mid_elem = seq[mid]

if item == mid_elem:
return True

recurse on left
elif item < mid_elem:

return binary_search_helper(seq, item, start, mid-1)
recurse on right

else:
return binary_search_helper(seq, item, mid+1, end)

def binary_search_improved(seq, item):

return binary_search_helper(seq, item, 0, len(seq)-1)

BINARY SEARCH

More on Big Oh

= = 7 \A- -
LHEBEBIVS

Understanding Big-O

Notation: n often denotes the number of elements (size)

Constant time or O(1): when an operation does not depend on the
number of elements, e.g.

Addrtion/subtraction/multiplication of two values, or defining a
variable etc are all constant time

Linear time or O(n): when an operation requires time proportional
to the number of elements, e.g.

for i1tem 1n seq:
<do something>

Quadratic time or O(n?): nested loops are often quadratic, e.g.,
for 1 1n range(n):
for j in range(n):
<do something>

Big-O: Common Functions

Notation: n often denotes the number of elements (size)

Our goal: understand efficiency of some algorithms at a high level

0(n%)
O(Cn)

Time —»

0C1)

Number of Elements —»

Sorting

: — X“lf.o' - \ / R

Sorting

Problem: Given a sequence of unordered elements, we need to sort

the elements in ascending order.
There are many ways to solve this problem!
Built-in sorting functions/methods in Python
sorted():function that returns a sorted list

sort(): list method that and sorts the list

Today: how do we design our own sorting algorithm!?
Question: What is the best (most efficient) way to sort n items!

We will use Big-O to find out!

Selection Sort

A possible approach to sorting elements in a list/array:

-ind the smallest element and move (swap) It to the first
HosItion

Repeat: find the second-smallest element and move It to the
second position, and so on

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat. find the second-smallest element and move It to the second
position, and so on

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat. find the second-smallest element and move It to the second
position, and so on

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat. find the second-smallest element and move It to the second
position, and so on

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat. find the second-smallest element and move It to the second

position, and so on

The gold bars represent the sorted portion of the list.

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat. find the second-smallest element and move It to the second

position, and so on

The gold bars represent the sorted portion of the list.

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat. find the second-smallest element and move It to the second

position, and so on

The gold bars represent the sorted portion of the list.

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat. find the second-smallest element and move It to the second

position, and so on

The gold bars represent the sorted portion of the list.

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat. find the second-smallest element and move It to the second

position, and so on

The gold bars represent the sorted portion of the list.

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat. find the second-smallest element and move It to the second

position, and so on

The gold bars represent the sorted portion of the list.

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat. find the second-smallest element and move It to the second

position, and so on

The gold bars represent the sorted portion of the list.

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat. find the second-smallest element and move It to the second

position, and so on

The gold bars represent the sorted portion of the list.

And now we're finally done!

Selection Sort
Roma Folk Dance

» https://www.youtube.com/watch?
v=Ns4 TPTC8whw

https://www.youtube.com/watch?v=Ns4TPTC8whw
https://www.youtube.com/watch?v=Ns4TPTC8whw

Selection Sort

Generalize: For each index i in the list Lst, we need to find the min
tem in Lst[i:] sowe canreplace Lst[i] with that item

In fact we need to find the position m1n_1index of the item that is
the minimum in Lst[i:]

Neat trick: how to swap values of variables @ and b in one line?

in-line "tuple" swapping: a, b = b, a

How do we implement this algorithm?

Selection Sort

def selection_sort(my_lst):

"""Selection sort of a given mutable sequence my_lst,
sorts my_Llst by mutating it. Uses selection sort."""

You will work on this helper

find size function in Lab 10

n = len(my_1st)

traverse through all elements
for i in range(n):

find min element in the sublist from index i1i+1 to end
min_index = get min_index(my_lst, 1i)

swap min element with current element at 1
my Ust[i], my_1st[min_index] = my_1lst[min_index], my_lst[i]

Selection Sort

def selection_sort(my_lst):

"""Selection sort of a given mutable sequence my_lst,
sorts my_Llst by mutating it. Uses selection sort."""

Even without an implementation,
find size can we guess how many steps
n = len(my_1st) does this function need to take!?

traverse through all elements
for i in range(n):

find min element in the sublist from index i+1 to end
min_index = get min_index(my_lst, 1i)

swap min element with current element at 1
my Ust[i], my_1st[min_index] = my_1lst[min_index], my_lst[i]

Selection Sort Analysis

The helper function get_min_index must iterate through index 1
to N to find the min item

When 1 = 0@ thisis n steps

When 1 = 1 thisis n=1 steps
When 1 = 2 thisis N=2 steps

And so on,until 1 = Nn=1 thisis 1 step

Thus overall number of steps Is sum of inner loop steps

n-D+n-2)+--4+0<n+m-D)+n-2)+ - +1

What is this sum? (You will see this in MATH 200 if you take it

n+Mm1)+...+2+1=nn+1)/2

\
\l

N

,\//_,

n+1

Selection Sort Analysis: Algebraic

S=n+m-1)+n-2)+--+24+1
+ S=14+24+--+m-=-2)+(n—-1)+n

2S=m+D+n+DH)+---+@+D+m+1D)+ @B+ 1)

2S5=n+1)-n
S=mn+1)-n-1/2

- Total number of steps taken by selection sort is thus:

. O(n(n+ 1)/2) = 0m(n+1)) =0 +n) = 00>

How Fast |s Selection Sort!?

2

» Selection sort takes approximately n= steps!

O(n?)

O(n)

Time ——

O(1)

Number of Elements —>

=) @ = Ny
=Y A mISI Ry PS/AWE

