
CS134 Lecture:
Special Methods & Linked Lists

Announcements & Logistics
• HW 10 will be released today

• Lab 9 Boggle: two-week lab now in progress

• Part 1 due today/tomorrow
• You can fix anything broken before turning in Part 2
• Part 2 handout will be posted Friday

• Part 2 also has a prelab!

• Asks you to draw out the Boggle game logic

Do You Have Any Questions?

Last Time
• Finished implementation of Tic Tac Toe game

• (Fun!!) Application of object-oriented design and inheritance

• (Fun!!) We can make our own data types!

• A little exposure to software design

• Designed to help with the Boggle lab

Today’s Plan
• Discuss special methods more, their purpose and how to call them

• Build a recursive list class

• Our own implementation of list!

• Preview of the fun world of design and implementation of data
structures

• Learn how to implement several special methods which let us utilize
built-in operators in Python for user-defined types

Python's Built-in list Class
• A class with methods (that someone else implemented)

• pydoc3 list

• Let’s implement our own list class with similar functionality

Notice the double
underscores: these are

special methods

Special Methods

Special Methods
• Start and end with __ (double underscore)

• Called magic methods (or informally dunder methods)

• Often not called explicitly using dot notation and called by other means

• What special methods have we already used seen/used so far?

• __init__(self, val)
• When is it called?

• Automatically when we create an instance (object) of the class

• Can also be invoked as obj.__init__(val) (where obj is
an instance of the class)

Special Methods
• __str__(self)

• When is it called?

• When we print an instance of the class using print(obj)

• Also called whenever we call str function on it: str(obj)

• Can also be invoked as obj.__str__()

• __repr__(self)
• Also returns a string but its format is very specific (can be used to

recreate the object of the class)
• Useful for debugging
• Don't worry about any more specifics for this class

Special Methods for Operators
• We can use mathematical and logical operators such as ==/+ to compare/add two

objects of a class by defining the corresponding special method

• Example of polymorphism (using a single method or operator for different uses)

• __eq__ (self, other):

• __ne__ (self, other):

• __lt__ (self, other):

• __gt__ (self, other):

• __add__(self, other) :

• __sub__(self, other):

• __mul__(self, other):

• There are many others!

x == y

x != y

x < y

x > y

x + y

x - y

x * y

__add__: why we can
concatenate sequences
with + as well as add

ints with +

Special Method: __len__
• __len__(self)

• Called when we use the built-in function len() in Python on an
object obj of the class: len(obj)

• We can call len() function on any object whose class has the
__len__() special method implemented

• All built-in collection data types we saw (string, list, range, tuple, set,
dictionaries) have this special method implemented

• This is why we are able to call len on them

• What is an example of a built-in type that we can't call len on?

• int, float, Bool, None

Other Special Methods for Sequences
• What other sequence operators have we used in this class?

• They each have a special method that is called whenever they are used

• Get an item at an index a sequence using []: calls
__getitem__

• e.g., word_lst[2] implicitly calls word_lst.__getitem__(2)

• Set an item at an index to another val using []: calls
__setitem__

• e.g., word_lst[0] = "hello" implicitly calls
word_lst.__setitem__(0, "hello)

in Operator: __contains__
• __contains__(self, val)

• When we say if elem in seq in Python:

• Python calls the __contains__ special method on seq

• That is, seq.__contains__(elem)

• If we want the in operator to work for the objects of our class, we can do
so by implementing the __contains__ special method

Python's Built-in list Class
• A class with methods (that someone else implemented)

• pydoc3 list

• Let’s implement our own list class with similar functionality

Notice the double
underscores: these are

special methods

Building Our Own List

What exactly is a list?
• A container for a sequence of values

• Recall that sequence implies an order

• Another way to think about this:

• A nested chain of values, or a linked list

• Each value has something after it: the rest of the sequence (recursion!)

• How do we know when we reach the end of our list?

• Rest of the list is None

3
_value

_rest
11
_value

_rest
5

_value

_rest
None

Our Own Class LinkedList
• Attributes:

• _value, _rest

• Recursive class:

• _rest points to another instance of the same class

• Any instance of a class that is created by using another instance of
the class is a recursive class

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

class LinkedList:
 """Implements our own recursive list data structure"""

 def __init__(self, value=None, rest=None):
 self._value = value
 self._rest = rest

 # getters/setters
 def get_rest(self):
 return self._rest

 def get_value(self):
 return self._value

Initializing Our LinkedList

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

rest is another
instance of our
LinkedList class

Special Methods (Review)
• __init__(self, val)

• When is it called?

• Automatically when we create an instance (object) of the class

• Can also be invoked as obj.__init__(val) (where obj is
an instance of the class)

• __str__(self)
• When is it called?

• When we print an instance of the class using print(obj)

• Also called whenever we call str function on it: str(obj)

• Can also be invoked as obj.__str__()

str() function calls __str__() method
def __str__(self):
 if self._rest is None:
 return str(self._value)
 else:
 return str(self._value) + ', ' + str(self._rest)

Recursive Implementation: __str__

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

This is recursion since str calls
__str__. The base case is

when self._rest is None

>>> my_lst = LinkedList(5, LinkedList(3, LinkedList(11)))
>>> print(my_lst) # testing __str__
5, 3, 11

• What if we want to enclose the elements in square brackets []?

• We can use a helper method that does the same thing as __str__()
on the previous slide, and then call that helper between concatenating
the square brackets

>>> my_lst = LinkedList(5, LinkedList(3, LinkedList(11)))
>>> print(myList) # testing __str__
[5, 3, 11]

Recursive Implementation: __str__

Looks more like Python list format

def __str_elements(self):
 # helper function for __str__()
 if self._rest is None:
 return str(self._value)
 else:
 return str(self._value) + ", " + self._rest.__str_elements()

def __str__(self):
 return "[" + self.__str_elements() + "]"

• In Labs 8 and 9, we included __repr__ methods in your starter code

• You do not need to worry about them! (Just ignore these methods in Lab 9!)

• For your reference, here is a quick summary:

• Like __str__(), __repr__() returns a string, useful for debugging

• Unlike __str__(), the format of the string is very specific

• __repr__() returns a string representation of an instance of a class
that can be used to recreate the object

>>> my_lst = LinkedList(5, LinkedList(3, LinkedList(11)))
>>> my_lst # testing __repr__
LinkedList(5, LinkedList(3, LinkedList(11, None)))

An Aside: __repr__

repr() function calls __repr__() method
return value should be a string that is a valid Python
expression that can be used to recreate the LinkedList
def __repr__(self):
 return "LinkedList({}, {})".format(self._value, repr(self._rest))

Notice we did not say
print(myList) here

Special Method: __len__
• __len__(self)

• Called when we use the built-in function len() in Python on an
object obj of the class: len(obj)

• We can call len() function on any object whose class has the
__len__() special method implemented

• We want to implement this special method so it tells us the number of
elements in our linked list, e.g. 3 elements in the list below

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

Implementing Recursively
• As our LinkedList class is defined recursively, let's implement the
__len__ method recursively

• Method will return an int (num of elements)

• What is the base case(s)?

• What about the recursive case?

• Count self (so, +1), and then call len() on the rest of the list!

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

len() function calls __len__() method
def __len__(self):
 # base case: i'm the empty list
 if self._rest is None and self._value is None:
 return 0
 # base case: i'm the last item
 elif self._rest is None and self._value is not None:
 return 1
 #recursive case
 else:
 # same as return 1 + self._rest.__len__()
 return 1 + len(self._rest)

Recursive Implementation: __len__

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

Note: It is preferred to use is or
is not operators (as opposed to
== or !=) when comparing a user-

defined object to a None value.

Other Special Methods

What About Other Special Methods?
• What other functionality does the built-in list have in Python that we can

incorporate into our own class?

• Can check if an item is in the list (in operator): __contains__

• Concatenate two lists using + : __add__

• Index a list with [] : __getitem__

• Set an item to another val, e.g. myList[2] = “hello" : __setitem__

• Compare the values of two lists for equality using == : __eq__

• Reverse/sort a list

• Append/Prepend an item to the list: append/prepend method

• Many others!

• Let's try to add some of these features to our LinkedList

in Operator: __contains__
• __contains__(self, val)

• When we say if elem in seq in Python:

• Python calls the __contains__ special method on seq

• That is, seq.__contains__(elem)

• If we want the in operator to work for the objects of our class, we can do so by
implementing the __contains__ special method

• Basic idea:

• “Walk” along list checking values

• If we find the value we’re looking for, return True

• If we make it to the end of the list without finding it, return False

• We’ll do this recursively!

in Operator: __contains__
• __contains__(self, val)

• When we say if elem in seq in Python:

• Python calls the __contains__ special method on seq

• That is, seq.__contains__(elem)

• If we want the in operator to work for the objects of our class, we can do
so by implementing the __contains__ special method

 # in operator calls __contains__() method
 def __contains__(self, val):
 if self._value == val:
 return True
 elif self._rest is None:
 return False
 else:
 # same as calling self.__contains__(val)
 return val in self._rest

Useful list methods:
.append(), .prepend(), .insert()

Useful List Method: append

5 3 11
_value

_rest

_value

_rest

_value

_rest
None

val None
_value

_rest

• append(self, val)
• When using lists, we can add an element to the end of an existing

list by calling append (note that append mutates our list)

• Basic idea:

• Walk to end of list

• Create a new LinkedList(val) and add it to the end

_re
st

Useful List Method: append

5 3 11
_value

_rest

_value

_rest

_value

_rest
val None
_value

_rest

• append(self, val)
• When using lists, we can add an element to the end of an existing

list by calling append (note that append mutates our list)

• Basic idea:

• Walk to end of list

• Create a new LinkedList(val) and add it to the end

Useful List Method: append
• append(self, val)

• When using lists, we can add an element to the end of an existing
list by calling append (note that append mutates our list)

• This entails setting the _rest attribute of the last element to be a
new LinkedList with the given value.

 def append(self, val):
 # if am at the end of the list
 if self._rest is None:
 # add a new LinkedList to the end
 self._rest = LinkedList(val)
 else:
 # else recurse until we find the end
 self._rest.append(val)

Useful List Method: prepend
• prepend(self, val)

• We may also want to add elements to the beginning of our list (this
will mutate our list, similar to append)

• The prepend operation is really efficient, we don’t need to walk
through the list at all — just do some variable reassignments.

5 3 11
_value

_rest

_value

_rest

_value

_rest

_value

_rest
Noneself

 def prepend(self, val):
 old_val = self._value
 old_rest = self._rest
 self._value = val
 self._rest = LinkedList(old_val, old_rest)

Useful List Method: prepend
• prepend(self, val)

• We may also want to add elements to the beginning of our list (this
will mutate our list, similar to append)

• The prepend operation is really efficient, we don’t need to walk
through the list at all — just do some variable reassignments.

5 3 11
_value

_rest

_value

_rest

_value

_rest

_value

_rest
Noneself val

_value

_rest

old

 def prepend(self, val):
 old_val = self._value
 old_rest = self._rest
 self._value = val
 self._rest = LinkedList(old_val, old_rest)

Useful List Method: insert
• insert(self, val, index)

• Finally, we want to allow for insertions at a specific index.

• Basic idea:

• If the specified index is 0, we can just add to the beginning (easy!)

• Otherwise, we walk to the appropriate index in the list, and
reassign the _rest attribute at that location to point to a new
LinkedList with the given value, and whose _rest attribute
points to the linked list it is displacing.

11
_value

_rest

_value

_rest
5 3

_value

_rest
None

val
_value

_rest

Useful List Method: insert
• insert(self, val, index)

• Finally, we want to allow for insertions at a specific index.

• Basic idea:

• If the specified index is 0, we can just add to the beginning (easy!)

• Otherwise, we walk to the appropriate index in the list, and
reassign the _rest attribute at that location to point to a new
LinkedList with the given value, and whose _rest attribute
points to the linked list it is displacing.

11
_value

_rest

_value

_rest
5 3

_value

_rest
Noneval

_value

_rest

Useful List Method: insert
• insert(self, val, index)

• If the specified index is 0, we can just use the prepend method.

• Otherwise, check to see if we're at end of the list

• Otherwise, we walk to the appropriate index in the list, and perform
the insertion

def insert(self, val, index):
 # if index is 0, we found the item we need to return
 if index == 0:
 self.prepend(val)
 # elif we have reached the end, so just append
 elif self._rest is None:
 self._rest = LinkedList(val)
 # else we recurse until index reaches 0
 else:
 self._rest.insert(val, index - 1)

[] Operator: __getitem__, __set_item__

• __getitem__(self, index) and
__setitem__(self, index, val)
• With lists, we can get or set the item at a specific index by using the [] operator

• get: val = mylist[1]

• set: mylist[2] = new_val

• To support the [] operator in our LinkedList class, we need to implement
__getitem__ and __setitem__

• Basic idea:

• Walk out to the element at index

• Get or set value at that index accordingly

• Recursive!

mylist[2]
• implicitly: mylist.__getitem__(2)

• When using lists, we can get the item at a specific index by using the
[] operator (e.g., val = mylist[2])

• What might be the base case?

• What might be the recursive case?

We've reached the index, return the value!

Cut one item off the front of our list, and subtract one
from our index. Keep looking!

mylist[2]
• implicitly: mylist.__getitem__(2)

• When using lists, we can get the item at a specific index by using the
[] operator (e.g., val = mylist[2])

def __getitem__(self, index):
 if index == 0:
 return self._value
 else:
 return self._rest[index - 1]

base case

recursive case

my_lst = LinkedList(5, LinkedList(3, LinkedList(11)))
my_lst[2]

__getitem__(2)
...
return LinkedList(3, LinkedList(11))[1]

__getitem__(1)
...
return LinkedList(11)[0]

__getitem__(0)
 if index == 0:

return LinkedList(11)._value

11

[] Operator: __getitem__, __set_item__

• __getitem__(self, index) and
__setitem__(self, index, val)

• With lists, we can get or set the item at a specific index by using the []
operator (e.g., val = mylist[1] or mylist[2] = new_val)

[] list index notation also calls __setitem__() method
index specifies which item we want, val is new value
def __setitem__(self, index, val):
 # if index is 0, we found the item we need to update
 if index == 0:
 self._value = val
 else:
 # else we recurse until index reaches 0
 # remember that this implicitly calls __setitem__
 self._rest[index - 1] = val

== Operator: __eq__
• __eq__(self, other)

• When using lists, we can compare their values using the == operator

• To support the == operator in our LinkedList class, we need to
implement __eq__

• We want to walk the lists and check the values

• Make sure the sizes of lists match, too

• __eq__(self, other)

• When using lists, we can compare their values using the == operator

• To support the == operator in our LinkedList class, we need to
implement __eq__

== Operator: __eq__

== operator calls __eq__() method
if we want to test two LinkedLists for equality, we test
if all items are the same
other is another LinkedList
def __eq__(self, other):
 # If both lists are empty
 if self._rest is None and other.get_rest() is None:
 return True

 # If both lists are not empty, then value of current list elements
 # must match, and same should be recursively true for
 # rest of the list
 elif self._rest is not None and other.get_rest() is not None :
 return self._value == other.get_value() and self._rest == other.get_rest()

 # If we reach here, then one of the lists is empty and other is not
 return False

Other Special Methods
• There are many other “special” methods in Python.

• __eq__ (self, other):

• __ne__ (self, other):

• __lt__ (self, other):

• __gt__ (self, other):

• __add__(self, other) :

• __sub__(self, other):

• __mul__(self, other):

• __truediv__(self, other):

• __pow__(self, other):

• There are others!

x == y
x != y
x < y
x > y
x + y
x - y
x * y
x / y
x ** y

Looking Ahead
• In CS136 you’ll see doubly linked lists! Overcomes some of

the inefficiencies of singly linked lists

The end!The end!

