CS|34:
Tic Tac loe 4

=) ../ @ m \ /e
=Y A mISI Ry PS/AWE

Announcements & Logistics

HW 9: due today
Lab 9 Boggle: two-week lab starts today!
Part | due Weds/Thurs [0 pm
Should receive automated feedback immediately on Gradescope
You can fix anything broken before turning in Part 2
Must turn In something to get Part 2 grade apply to both
Part 2 due Nov 20/21 (handout will be posted soon)
Part 2 also has a prelab!

Asks you to draw out the Boggle game logic (similarto TTT logic
flow chart)

Do You Have Any Questions?

Last [ime and loday

- Implemented guessinggame.py and designed Game class
- Joday:
* Wrap up the game

* FinishTTTGame do_one_click(point) method

» Brief discussion of Tuples

- [TT vs Boggle discussion

TTTCube

[T TGame Logic

= = 7 \A- -

[TT Game Logic

Start
A
v N
i Y Update
Wait fo.r Ir.1 Y Get Empty | cube
mouse click Grid? cube space? di
isplay
A N v
Result Y Reset
Y In is aWin? state
Siate oo !
utton!
Ny
N Result Y
is a draw?
In Exit Y > End N‘ Change
button? : players
N |

[TT Game Logic

Start
A
v N
i Y Update
Wait fo.r Ir.1 Y Get Empty | cube
mouse click Grid? cube space? di
isplay
A N v
Result Y Reset
Y In is aWin? state
Siate oo !
utton!
Ny
N Result Y
is a draw?
In Exit Y > End N‘ Change
button? : players
N |

def

Translating our Logic to Coc

c

Last class, we started our method for handling a single mouse click

(point)

The game continues (waits for more clicks) if this method returns True

It this method returns False, game ends

do_one_click(self, point):

step 1: check for exit button
if self._board.in_exit(point):
TODO

step 2: check for reset button
elif self._board.in_reset(point):
TODO

step 3: check if click on the grid
elif self._board.in_grid(point):
TODO

keep going!
return True

]

Wait for
mouse click

button?

!

In Exit
button?

LN

Y

» End

Y Update
—_— cube

display

Result Y Reset

N

Result Y

is a draw?
N | Change
—>

players

Translating our Logic to Code

-+ Let's handle the "exit” button first (since it's the easiest)

if self. _board.in_exit(point):
print("Exiting...")
game over
return False

Translating our Logic to Coc

Now let's handle reset

elif self. _board.in_reset(point):
print("Reset button clicked")
self. board.reset()
self. _board.set_string_to_upper_text("")
self. _num_moves = 0 o

self._player = "X"

Result Y Reset
iS aWin? state
N
Result Y
is a draw?
N | Chang
—>

Translating our Logic to Code

- Finally, let's handle a “normal™ move. Start by getting point and
TTTCube

elif self._board.in_grid(point):

get the cube at the point the user clicked
tcube = self. board.get_ttt cube at _point(point)

Translating our Logic to Code

elif self._board.in_grid(point):

he rest of our
code checks for # get the cube at the point the user clicked
. tcube = self._board.get_ttt_cube_at_point(point)
a valid move, a
; # make sure this square 1s vacant
win, d draW’ and if tcube.get_letter() == "":
updates state tcube.set_letter(self._player)

self._board.place_cubes_on_board()

accordingly
valid move, so increment num_moves
At the end’ if the self._num_moves += 1
MOVE WdAS Vahd, # check for win or draw
we Swap players win_flag = self._board.check_for_win(self._player)
if win_flag:
self._board.set_string_to_upper_text(self._player + " WINS!")
elif self._num_moves == self._board.get_rows()

x self._board.get_cols():
self._board.set_string_to_upper_text("DRAW!")
not a win or draw, swap players
else:
toggle player!
self._player = "0" if self._player == "X" else "X"

keep going!
return True

[TT Summary

Basic strategy

Board: start general, don’t think about game specific details

» TTTBoard: extend generic board with TTT specific features
Inherit everything, update attributes/methods as needed
» TTTCube isolate functionality of a single TTT cube on board

- Think about what features are necessary/helpful in other
classes

» TTTGame: think through logic conceptually before writing any
code

- Translate logic into code carefully, testing along the way

Class Discussion:
Bogsle vs [T T Design Differences

H ~ \;0‘ "] \ g‘dwé‘o =] L) \“‘o' = \ §¢w%‘

Boggle Demo

- ()

#

Boggle: [he same but different

What things are different about Boggle?
single player not 2-player

pleces are randomly placed on grid, selected from among a set of
pre-determined cubes

- grid size Is different (4x4 instead of 3x3)

no notion of a "win" "tie" or "draw" --- game continues with new
words being created until button Is reset

Representing Cubes

he samel 6 cubes, each with 6 faces, come In every Boggle Game box

cube
cube
cube
cube
cube
cube
cube
cube
cube
cube
cube 10
cube 11
cube 12
cube 13
cube 14
cube 15

CUBE_FACES — [(IIAII’ IIAII’ IICII’ IIIII’ IIOII’ IITII)’
(IITII’ IIYII’ IIAII' IIBII' IIIII’ IILII)’
(IIJII’ IIMII’ IIOII’ IIQUII’ IIAII’ IIBII)’
(IIAII’ IICII’ IIDII' IIEII' IIMII’ IIPII)’
(IIAII’ IICII’ IIEII’ IILII’ IISII’ IIRII)’
(IIAII’ IIDII’ IIEII' IINII' IIVII’ IIZII)’
(IIAII’ IIHII’ IIMII’ IIOII’ IIRII’ IISII)’
(IIBII’ IIFII’ IIIII' IIOII' IIRII’ IIXII)’
(IIDII’ IIEII’ IINII’ IIOII’ IISII’ IIWII)’
(IIDII’ IIKII’ IINII' IIOII' IITII’ IIUII)’
(IIEII’ IIEII’ IIFII’ IIHII’ IIIII’ IIYII)’
(IIEII’ IIGII’ IIIII' IINII' IITII’ IIVII)’
(IIEII’ IIGII’ IIKII’ IILII’ IIUII’ IIYII)’
(IIEII’ IIHII’ IIIII' IINII' IIPII’ IISII)’
(IIEII’ IILII’ IIPII’ IISII’ IITII’ IIUII)’
(IIGII’ IIIII’ IILII' IIRII' IIUII’ IIWII)]

OCOONOULRL,WNEOS

HHEHEHFHRHFHFHRIFTHRHIFHFRIRHRHIEH

A list of 16 tuple objects

New Seqguence lype: Tuple

Tuples are an immutable sequence of values (almost like iImmutable
lists) separated by commas and enclosed within parentheses ()

tuple of strings
>>> names = ('"Charlie", "Lucy", "Snoopy")

tuple of 1ints
>>> primes = (2, 3, 5, 7, 11)

singleton (tuple with length 1)
>>> num = (5,)

empty tuple
>>> empt = ()

tuples can have mixed types
>>> values = (5, True, "abc")

Why Use a lTuple to represent a Cube!

Cube game pleces are physical objects: they are fixed and
unchangeable

- luples are iImmutable
Cube game pleces have 6 "faces" each, with a letter® per face

- Tuples are a sequence type; they can store any number of string
values, including 6

Exactly one of a cube's face is "visible” when placed on the grid

 We can index into a Tuple using the [] operator, so a single integer
can be used to represent which of the 6 faces is visible

Why does BoggleBoard store a 115t of Tuples!?

he cube faces are fixed, but the cube locations are not---shaking the
boggle game board rearranges the cubes

Lists are mutable, so we can rearrange the list's contents to simulate
"shaking”

Cubes are placed onto the 4x4 grid (a list of list of TextRect objects)

- We need a way to map a position in our |-dimensional list of cubes
to a 2-dimensional list of TextRect objects and back

- This is the point of the pre-lab assignment!

Mapping Cubes in BogsleBoarc

CUBE_FACES — [IIAII’ IIAII' IICII’ IIIII’ IIOII’ IITII)
T, Uy, A", "s", "Ii", "L")
IIJII’ IIMII' IIOII’ IIQUII’ IIAII’
"AM, "C", "D", "E", "M", "P")
IIAII’ IICII' IIEII’ IILII’ IISII’ IIRII)
"A", "D, "E", "N", "Vv©', "Z")
IIAII’ IIHII' IIMII’ IIOII’ IIRII’ IISII)
", "F", "1, "0", "R", "X")
IIDII’ IIEII' IINII’ IIOII’ IISII’ IIWII)
"p", "K", "N", "O", “T", "U")
)
)
)
)
)
)

@

[N] - - - - - - - - - - - N a -

IIEII’ IIEII’ IIFII' IIHII’ IIIII’ IIYII
IIEII’ IIGII’ IIIII’ IINII’ IITII’ IIVII
IIEII’ IIGII’ IIKII' IILII’ IIUII’ IIYII
IIEII’ IIHII’ IIIII’ IINII’ IIPII’ IISII
IIEII’ IILII’ IIPII' IISII’ IITII’ IIUII
IIGII’ IIIII’ IILII’ IIRII’ IIUII’ IIWII

_grid = [[&4, 08 BN R,
(E,8.8 |1,
H:R ROl N
(B, B B B 7]

HHFHHFHHFHHFHHFHRHFHRFHRHK

cube
cube
cube
cube
cube
cube
cube
cube
cube
cube
cube
cube
cube
cube
cube
cube

Row O

Row |

OCONOULRL,WNEOS

Row 2

13 Row 3

def _which_row(self, cube_number) :

The row of the board's grid that corresponds
to cube cube _number

def _which_col(self, cube_number) :

The row of the board's grid that corresponds
to cube cube_number

def _which_cube(self, row, col) :

The index of the cube within the cube list
that corresponds to the cube appearing at
coords (row,col) of the board's grid

Boggle Strategies

At a high level, Tic Tac Toe and Boggle have a lot iIn common, but the
game state of Boggle is more complicated

Don’t forget the bigger picture as you implement individual methods
Think holistically about how the objects/classes work together

solate functionality and test often (use __Str__ to print values as
needed)

Discuss logic with partner/instructor before writing any code

Worry about common cases first, but don't forget the “edge’” cases

Come see Instructors/ TAs for clarification

GOOD LUCK and HAVE FUN!

=) @ = Ny
=Y A mISI Ry PS/AWE

CS|34:
L ab 9

=) ../ @ m \ /e
=Y A mISI Ry PS/AWE

Lab 9 Overview

User-defined Types with Inheritance!

Using the Board class from...class

Multi-week partners lab (counts as two labs in terms of grade; Lab is
decomposed into two logical parts)

Part | (Boggle Board & Cube) due Nov |3/14

We will run our tests on these and return automated feedback
(similar to Lab 4 part |); will lose credit on Part Il if you don't
submit Part |

You are allowed/encouraged to revise It afterwards

Part 2 (Boggle Game) (and revised Part |) due Nov 20/2|

Boggle Strategies

Tic Tac Toe and Boggle are similar, but Boggle's same state 1s more
complicated

In Lab 9 you should follow a similar strategy to what we did with T TT:

Don’t forget the bigger picture as you implement individual methods
Think holistically about how the objects/classes work together

Isolate functionality and test often

use __Str__ to print values as needed

1f __name__=="__main__" also useful for isolated testing

Discuss logic with partner before writing any code

Worry about common cases first, but don't forget the “edge’” cases

Come see Instructors/ TAs for clarification

Gt Workflow Reminder

Starting a work session:

Always pull most recent version before making any edits (clone if using a new
machine)

Middle of a work session:

Commit changes to all files first (git commit -am "message”) commits changes to
all files already on evolene

After commit, pull again to get your partner's edits

I an edrtor opens up saying files were merged: that's okay, just save & exit
("Ctrl+x" and then "y")

Then push your edits to evolene (can check evolene to make sure it worked)

@ git

Do the above steps (commit, pull, push) frequently
Can check status anytime by typing git status

Let us know If you face any Issues!

Do You Have Any Questions?

3 minute game,

Pieces: | 6 six-sided letter cubes that are held in a small plastic grid
with a covered lid

. One player shakes the grid to jumble the letters around

. Then each player has 3 minutes to find as many words (3+ characters)
as they can from the jumbled letters

Fach player records as many words as they can create from the letters
that are adjoining horizontally, vertically, or diagonally

. A cube cannot be used more than once within a single word,

. The more words a player can find, the more points the player earns.

