
CS134:
Tic Tac Toe 4

Announcements & Logistics
• HW 9: due today

• Lab 9 Boggle: two-week lab starts today!

• Part 1 due Weds/Thurs 10 pm
• Should receive automated feedback immediately on Gradescope
• You can fix anything broken before turning in Part 2
• Must turn in something to get Part 2 grade apply to both
• Part 2 due Nov 20/21 (handout will be posted soon)

• Part 2 also has a prelab!

• Asks you to draw out the Boggle game logic (similar to TTT logic
flow chart)

Do You Have Any Questions?

Last Time and Today
• Implemented guessinggame.py and designed TTTGame class

• Today:

• Wrap up the game

• Finish TTTGame do_one_click(point) method

• Brief discussion of Tuples

• TTT vs Boggle discussion

Board
TTT Board

TTTCube

Game

TTTGame Logic

Start

Wait for
mouse click

Reset
state

Get
cube

End

In
Reset

button?

In Exit
button?

In
Grid?

Y

N

N

N

Y

Y

Reset
state

Result
is a Win?

Y

N

Update
cube

display

Change
players

Empty
space?

Y

N

Result
is a draw?

Y

N

TTT Game Logic

Start

Wait for
mouse click

Reset
state

Get
cube

End

In
Reset

button?

In Exit
button?

In
Grid?

Y

N

N

N

Y

Y

Reset
state

Result
is a Win?

Y

N

Update
cube

display

Change
players

Empty
space?

Y

N

Result
is a draw?

Y

N

TTT Game Logic

• Last class, we started our method for handling a single mouse click
(point)

• The game continues (waits for more clicks) if this method returns True
• If this method returns False, game ends

Translating our Logic to Code

 def do_one_click(self, point):

 # step 1: check for exit button
 if self._board.in_exit(point):
 # TODO

 # step 2: check for reset button
 elif self._board.in_reset(point):
 # TODO

 # step 3: check if click on the grid
 elif self._board.in_grid(point):
 # TODO

 # keep going!
 return True

• Let’s handle the “exit” button first (since it’s the easiest)

Translating our Logic to Code

 if self._board.in_exit(point):
 print("Exiting...")
 # game over
 return False

• Now let’s handle reset

Translating our Logic to Code

 elif self._board.in_reset(point):
 print("Reset button clicked")
 self._board.reset()
 self._board.set_string_to_upper_text("")
 self._num_moves = 0
 self._player = "X"

• Finally, let’s handle a “normal” move. Start by getting point and
TTTCube

Translating our Logic to Code

 elif self._board.in_grid(point):

 # get the cube at the point the user clicked
 tcube = self._board.get_ttt_cube_at_point(point)

 elif self._board.in_grid(point):

 # get the cube at the point the user clicked
 tcube = self._board.get_ttt_cube_at_point(point)

 # make sure this square is vacant
 if tcube.get_letter() == "":
 tcube.set_letter(self._player)
 self._board.place_cubes_on_board()

 # valid move, so increment num_moves
 self._num_moves += 1

 # check for win or draw
 win_flag = self._board.check_for_win(self._player)
 if win_flag:
 self._board.set_string_to_upper_text(self._player + " WINS!")
 elif self._num_moves == self._board.get_rows()
 * self._board.get_cols():
 self._board.set_string_to_upper_text("DRAW!")
 # not a win or draw, swap players
 else:
 # toggle player!
 self._player = "O" if self._player == "X" else "X"

 # keep going!
 return True

• The rest of our
code checks for
a valid move, a
win, a draw, and
updates state
accordingly

• At the end, if the
move was valid,
we swap players

Translating our Logic to Code

TTT Summary
• Basic strategy

• Board: start general, don’t think about game specific details

• TTTBoard: extend generic board with TTT specific features

• Inherit everything, update attributes/methods as needed

• TTTCube isolate functionality of a single TTT cube on board

• Think about what features are necessary/helpful in other
classes

• TTTGame: think through logic conceptually before writing any
code

• Translate logic into code carefully, testing along the way

Class Discussion:
Boggle vs TTT Design Differences

Boggle Demo

Boggle: The same but different
• What things are different about Boggle?

• single player not 2-player
• pieces are randomly placed on grid, selected from among a set of

pre-determined cubes
• grid size is different (4x4 instead of 3x3)
• no notion of a "win" "tie" or "draw" --- game continues with new

words being created until button is reset
• ...

Representing Cubes
• The same16 cubes, each with 6 faces, come in every Boggle Game box

CUBE_FACES = [("A", "A", "C", "I", "O", "T"), # cube 0
 ("T", "Y", "A", "B", "I", "L"), # cube 1
 ("J", "M", "O", "QU", "A", "B"), # cube 2
 ("A", "C", "D", "E", "M", "P"), # cube 3
 ("A", "C", "E", "L", "S", "R"), # cube 4
 ("A", "D", "E", "N", "V", "Z"), # cube 5
 ("A", "H", "M", "O", "R", "S"), # cube 6
 ("B", "F", "I", "O", "R", "X"), # cube 7
 ("D", "E", "N", "O", "S", "W"), # cube 8
 ("D", "K", "N", "O", "T", "U"), # cube 9
 ("E", "E", "F", "H", "I", "Y"), # cube 10
 ("E", "G", "I", "N", "T", "V"), # cube 11
 ("E", "G", "K", "L", "U", "Y"), # cube 12
 ("E", "H", "I", "N", "P", "S"), # cube 13
 ("E", "L", "P", "S", "T", "U"), # cube 14
 ("G", "I", "L", "R", "U", "W")] # cube 15

A list of 16 tuple objects

New Sequence Type: Tuple
• Tuples are an immutable sequence of values (almost like immutable

lists) separated by commas and enclosed within parentheses ()

tuple of strings
>>> names = ("Charlie", "Lucy", "Snoopy")

tuple of ints
>>> primes = (2, 3, 5, 7, 11)

singleton (tuple with length 1)
>>> num = (5,)

empty tuple
>>> empt = ()

tuples can have mixed types
>>> values = (5, True, "abc")

Why Use a Tuple to represent a Cube?
• Cube game pieces are physical objects: they are fixed and

unchangeable
• Tuples are immutable

• Cube game pieces have 6 "faces" each, with a letter* per face
• Tuples are a sequence type; they can store any number of string

values, including 6
• Exactly one of a cube's face is "visible" when placed on the grid

• We can index into a Tuple using the [] operator, so a single integer
can be used to represent which of the 6 faces is visible

Why does BoggleBoard store a list of Tuples?

• The cube faces are fixed, but the cube locations are not---shaking the
boggle game board rearranges the cubes

• Lists are mutable, so we can rearrange the list's contents to simulate
"shaking"

• Cubes are placed onto the 4x4 grid (a list of list of TextRect objects)

• We need a way to map a position in our 1-dimensional list of cubes
to a 2-dimensional list of TextRect objects and back

• This is the point of the pre-lab assignment!

_grid = [[, , ,],
[, , ,],

[, , ,],

[, , ,]]

Mapping Cubes in BoggleBoard
CUBE_FACES = [("A", "A", "C", "I", "O", "T"), # cube 0
 ("T", "Y", "A", "B", "I", "L"), # cube 1
 ("J", "M", "O", "QU", "A", "B"), # cube 2
 ("A", "C", "D", "E", "M", "P"), # cube 3
 ("A", "C", "E", "L", "S", "R"), # cube 4
 ("A", "D", "E", "N", "V", "Z"), # cube 5
 ("A", "H", "M", "O", "R", "S"), # cube 6
 ("B", "F", "I", "O", "R", "X"), # cube 7
 ("D", "E", "N", "O", "S", "W"), # cube 8
 ("D", "K", "N", "O", "T", "U"), # cube 9
 ("E", "E", "F", "H", "I", "Y"), # cube 10
 ("E", "G", "I", "N", "T", "V"), # cube 11
 ("E", "G", "K", "L", "U", "Y"), # cube 12
 ("E", "H", "I", "N", "P", "S"), # cube 13
 ("E", "L", "P", "S", "T", "U"), # cube 14
 ("G", "I", "L", "R", "U", "W")] # cube 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Row 0

Row 1

Row 2

Row 3

def _which_row(self, cube_number) :
 """
 The row of the board's grid that corresponds
 to cube cube_number
 """

def _which_col(self, cube_number) :
 """
 The row of the board's grid that corresponds
 to cube cube_number
 """
def _which_cube(self, row, col) :
 """
 The index of the cube within the cube list
 that corresponds to the cube appearing at
 coords (row,col) of the board's grid
 """

Boggle Strategies
• At a high level, Tic Tac Toe and Boggle have a lot in common, but the

game state of Boggle is more complicated

• Don’t forget the bigger picture as you implement individual methods

• Think holistically about how the objects/classes work together

• Isolate functionality and test often (use __str__ to print values as
needed)

• Discuss logic with partner/instructor before writing any code

• Worry about common cases first, but don’t forget the “edge” cases
• Come see instructors/TAs for clarification

GOOD LUCK and HAVE FUN!

The end!

CS134:
Lab 9

Lab 9 Overview
• User-defined Types with Inheritance!

• Using the Board class from...class

• Multi-week partners lab (counts as two labs in terms of grade; Lab is
decomposed into two logical parts)

• Part 1 (Boggle Board & Cube) due Nov 13/14
• We will run our tests on these and return automated feedback

(similar to Lab 4 part 1); will lose credit on Part II if you don't
submit Part I

• You are allowed/encouraged to revise it afterwards
• Part 2 (Boggle Game) (and revised Part 1) due Nov 20/21

Boggle Strategies
• Tic Tac Toe and Boggle are similar, but Boggle's game state is more

complicated
• In Lab 9 you should follow a similar strategy to what we did with TTT:

• Don’t forget the bigger picture as you implement individual methods

• Think holistically about how the objects/classes work together
• Isolate functionality and test often

• use __str__ to print values as needed

• if __name__=='__main__' also useful for isolated testing!

• Discuss logic with partner before writing any code

• Worry about common cases first, but don’t forget the “edge” cases
• Come see instructors/TAs for clarification

GOOD LUCK and HAVE FUN!

Git Workflow Reminder
• Starting a work session:

• Always pull most recent version before making any edits (clone if using a new
machine)

• Middle of a work session:
• Commit changes to all files first (git commit -am "message") commits changes to

all files already on evolene
• After commit, pull again to get your partner's edits
• If an editor opens up saying files were merged: that's okay, just save & exit

("Ctrl+x" and then "y")
• Then push your edits to evolene (can check evolene to make sure it worked)

• Do the above steps (commit, pull, push) frequently
• Can check status anytime by typing git status
• Let us know if you face any issues!

Do You Have Any Questions?

Playing Boggle
• Word Game: objective is to have the most points at the end of each

3 minute game.
• Pieces: 16 six-sided letter cubes that are held in a small plastic grid

with a covered lid

1. One player shakes the grid to jumble the letters around

2. Then each player has 3 minutes to find as many words (3+ characters)
as they can from the jumbled letters

3. Each player records as many words as they can create from the letters
that are adjoining horizontally, vertically, or diagonally

4. A cube cannot be used more than once within a single word.

5. The more words a player can find, the more points the player earns.

