CS|34:
Tic Tac Toe 3

: - rarr
=FAmISK R PAVE -

Announcements & Logistics

HW 9 due Monday @ 10 pm
Lab 9 Boggle: two-week lab
Part | due next Wed/Thur 10 pm
Part 2 due following week
Both parts have a prelab due at the beginning of lab
Can solve jointly with partner/ or individually and then discuss

Have it ready on a sheet of paper at the start of lab

Do You Have Any Questions?

VWhere We Are

» Designed classes to represent a Board and

Cube

» Before that, we designed a graphical Board class to display a board

- Today we will bring these together:

» Design a graphical tic-tac-toe game

 Next time:

» Finish up T TTGame class

» Discuss differences between and Boggle

Upper text area

Text area

Lower text area:

RESET

EXIT

[TT Game Logic

TTTCube
TTT Board

Board

; rareen
poF - IS Ko R PO W

Other Games!

Have we implemented any other games this semester?

- Actually, yes! The "number guessing game”

General idea;

* A number is chosen (erther at random or by the game runner)

- A player repeatedly guesses numbers until the chosen number is
suessed

Hints of "higher” or "lower" are given after each incorrect guess

- The player's score Is the number of guesses needed to identify the
number

Let's describe the gameplay logic using a flow chart

Guessing Game Logic

» Let’s create a flowchart to help us think through the state of the game

at various stages

User given

What if the guess was
incorrect or invalid?

feedback < x
about guess

l N
User is

prompted for —»
a guess

I

A number is
chosen

Guess
is a number?

Start —»

Let's first model the case
where the guess is perfect

A x

Y Y

Y Guess N
—

Guess N
too high?

Guess is
correct

'

<4— Print score

too low?

End

Guessing Game: Code In Class

- ()

#

Finally... TTT Game Logic

+ Let's create a flowchart to help us think through the state of the
game at various stages

l A

Wait for Y Empt Y
Start —» S — : 17 — mpty
mouse click Grid? space?

N ‘ Change
» players —»

Let’s think about the
“common’ case: a valid move in
the middle of the game

Finally... TTT Game Logic

« |Let's create a
game at various stages

flowchart to help us think through the state of the

'

Wait for
Start —» .
mouse click

Now let’s consider the case of a
win, draw, or invalid move

Grid?

Change

» players —»

Finally... TTT Game Logic

+ Let's create a flowchart to help us think through the state of the

game at various stages

'

Wait for

Start —» . — d?
mouse click Grid?

|

Reset
state

Y
<4—. Reset?

Now’s let suppose a player
chooses reset

T A
Win? —» Reset
' state
A
Ny
Draw? !
N ‘ Change

» players —»

Finally... TTT Game Logic

+ Let's create a flowchart to help us think through the state of the

game at various stages

'

Wait for

Start —») — id?
mouse click Grid?

Now’s let suppose a player Exit?
chooses exit

T A
Win? —» Reset
' state
A
Ny
Draw? !
N ‘ Change

» players —»

» End

Finally... TTT Game Logic

« |et’s create a

game at various stages

flowchart to help us think through the state of the

'

Wait for

Start —»

mouse click

Finally, let’s
handle the click
that may be
outside of any
of the “valid”
regions

Change

» players —»

» End

Finally... TTT Game Logic

Let's create a flowchart to help us think through the state of the
game at various stages

l A
f
Wait for . Y Empty Y : Y Reset
| mouse click — >~ ©Grid? _—> space? A Win?_—> state
A A
s <+—._ Reset? Draw? !
state
N‘ Change
Nl » players —»
Y
Exit? » End
Ny

Translating our Logic to Code

Let’s think about __1h1t__:

What do we need!

a board, player, and maybe hum_moves (to detect draws
easily)

v 1 T i
N
Wait for " v q
. id? ? in? eset
Start — ouse click Grid? _=—». Empty? —»_ Winl _=p e
Y Y
Reset <. Reset? Draw?
state
N Change
N players —»
Exit? ! » [End
\y

Translating our Logic to Code

- Now let's write a method for handling a single mouse click (point)
- The game continues (walts for more clicks) if this method returns True

- It this method returns False, game ends

def do_one_click(self, point):

step 1: check for exit button

A
if self._board.in_exit(point): * T
TODO
Start Wait fo.r _Y> Win? _Y> Reset
mouse click state
step 2: check for reset button A
elif self._board.in_reset(point): T N¢
TODO ;
Draw?
step 3: check if click on the grid N Change
elif self._board.in_grid(point): players —
TODO
» End

keep going!
return True

Translating our Logic to Code

-+ Let's handle the "exit” button first (since it's the easiest)

if self. _board.in_exit(point):
print("Exiting...")
game over
return False

; 1 1

Wait for " v Ny
. id? ? in? eset
Start = e click Grid? =% Empty? = Winl _=p e
Y Y
REsel o Reset! Draw?
state
N Change
N players —»

» End

Translating our Logic to Code

Now let's handle reset

elif self. _board.in_reset(point):
print("Reset button clicked")
self. board.reset()
self. _board.set_string_to_upper_text("")
self. _num_moves = 0
self. player = "X" v N 11

Wait for v v N R
| -) . eset
ouse dick — Grid? =% Empty? —»_ Winl _=p state

"y

Draw!

Start —p

N Change
players =

» End

Translating our Logic to Code

Finally, let's handle a “normal™ move. Start by getting point and
TTTCube

elif self._board.in_grid(point):

get the cube at the point the user clicked
tcube = self. board.get_ttt cube at _point(point)

v

Wait for
mouse click

| T
Reset
state

Start —p

Change
players =

» End

Translating our Logic to Code

elif self._board.in_grid(point):

he rest of our
code checks for # get the cube at the point the user clicked
. tcube = self._board.get_ttt_cube_at_point(point)
a valid move, a
; # make sure this square 1s vacant
win, d draW’ and if tcube.get_letter() == "":
updates state tcube.set_letter(self._player)

tcube.place_cube(self._board)

accordingly
valid move, so increment num_moves
At the end’ if the self._num_moves += 1
MOVE WdAS Vahd, # check for win or draw
we Swap players win_flag = self._board.check_for_win(self._player)
if win_flag:
self._board.set_string_to_upper_text(self._player + " WINS!")
elif self._num_moves == self._board.get_rows()

x self._board.get_cols():
self._board.set_string_to_upper_text("DRAW!")
not a win or draw, swap players
else:
toggle player!
self._player = "0" if self._player == "X" else "X"

keep going!
return True

[TT Summary

Basic strategy

Board: start general, don’t think about game specific details

» TTTBoard: extend generic board with TTT specific features
Inherit everything, update attributes/methods as needed
» TTTCube isolate functionality of a single TTT cube on board

- Think about what features are necessary/helpful in other
classes

» TTTGame: think through logic conceptually before writing any
code

- Translate logic into code carefully, testing along the way

Boggle Strategies

At a high level, Tic Tac Toe and Boggle have a lot iIn common, but the
game state of Boggle is more complicated

In Lab 9 you should follow a similar strategy to what we did with TTT
Don’t forget the bigger picture as you implement individual methods

Think holistically about how the objects/classes work together

Isolate functionality and test often (use __Str__ to print values as
needed)

Discuss logic with partner/instructor before writing any code
Worry about common cases first, but don't forget the “edge’” cases

Come see Instructors/ TAs for clarification

GOOD LUCK and HAVE FUN!

=) @ = Ny
=Y A mISI Ry PS/AWE

