
CS134:
Tic Tac Toe 3

Announcements & Logistics
• HW 9 due Monday @ 10 pm

• Lab 9 Boggle: two-week lab

• Part 1 due next Wed/Thur 10 pm

• Part 2 due following week

• Both parts have a prelab due at the beginning of lab
• Can solve jointly with partner/ or individually and then discuss

• Have it ready on a sheet of paper at the start of lab

Do You Have Any Questions?

Where We Are
• Designed classes to represent a TTTBoard and TTTCube

• Before that, we designed a graphical Board class to display a board

• Today we will bring these together:

• Design a graphical tic-tac-toe game

• Next time:

• Finish up TTTGame class

• Discuss differences between TTT and Boggle

TTT Game Logic

Board
TTT Board

TTTCube

Game

Other Games?
• Have we implemented any other games this semester?

• Actually, yes! The "number guessing game"
• General idea:

• A number is chosen (either at random or by the game runner)
• A player repeatedly guesses numbers until the chosen number is

guessed
• Hints of "higher" or "lower" are given after each incorrect guess

• The player's score is the number of guesses needed to identify the
number

Let's describe the gameplay logic using a flow chart

N Y Y

Guessing Game Logic
• Let’s create a flowchart to help us think through the state of the game

at various stages

Start A number is
chosen

User is
prompted for

a guess

User given
feedback

about guess

N Guess
too high?

Y Guess
too low?

Guess
is a number?

N Guess is
correct

Print scoreEnd

Let's first model the case
where the guess is perfect

What if the guess was
incorrect or invalid?

Guessing Game: Code in Class

Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the

game at various stages

Start
Wait for

mouse click Grid?
Y Empty

space? Win?
Y

Draw?

N

N Change
players

Let’s think about the
“common” case: a valid move in

the middle of the game

Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the

game at various stages

Start
Wait for

mouse click Grid?
Y Empty

space? Win?
Y

Draw?

N

N Change
players

Y Reset
state

Y

N

Now let’s consider the case of a
win, draw, or invalid move

Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the

game at various stages

Start
Wait for

mouse click

Reset?

Grid?
Y

N

YReset
state

Empty
space? Win?

Y Y Reset
state

Draw?

N

Y

N

N

Change
players

Now’s let suppose a player
chooses reset

Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the

game at various stages

Start
Wait for

mouse click

Reset?

Exit?

Grid?
Y

N

N

YReset
state

Y
End

Empty
space? Win?

Y Y Reset
state

Draw?

N

Y

N

N

Change
players

Now’s let suppose a player
chooses exit

Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the

game at various stages

Start
Wait for

mouse click

Reset?

Exit?

Grid?
Y

N

N

N

YReset
state

Y
End

Empty
space? Win?

Y Y Reset
state

Draw?

N

Y

N

N

Change
playersFinally, let’s

handle the click
that may be

outside of any
of the “valid”

regions

Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the

game at various stages

Start
Wait for

mouse click

Reset?

Exit?

Grid?
Y

N

N

N

YReset
state

Y
End

Empty
space? Win?

Y Y Reset
state

Draw?

N

Y

N

N

Change
players

• Let’s think about __init__:

• What do we need?
• a board, player, and maybe num_moves (to detect draws

easily)

Translating our Logic to Code

Start Wait for
mouse click

Reset?

Exit?

Grid?

Reset
state

End

Empty? Win? Reset
state

Draw?

Change
players

Y

N

N

N

Y

Y

Y Y

N

Y

N

N

• Now let’s write a method for handling a single mouse click (point)
• The game continues (waits for more clicks) if this method returns True
• If this method returns False, game ends

Translating our Logic to Code

Start Wait for
mouse click

Reset?

Exit?

Grid?

Reset
state

End

Empty? Win? Reset
state

Draw?

Change
players

Y

N

N

N

Y

Y

Y Y

N

Y

N

N

 def do_one_click(self, point):

 # step 1: check for exit button
 if self._board.in_exit(point):
 # TODO

 # step 2: check for reset button
 elif self._board.in_reset(point):
 # TODO

 # step 3: check if click on the grid
 elif self._board.in_grid(point):
 # TODO

 # keep going!
 return True

• Let’s handle the “exit” button first (since it’s the easiest)

Translating our Logic to Code

Start Wait for
mouse click

Reset?

Exit?

Grid?

Reset
state

End

Empty? Win? Reset
state

Draw?

Change
players

Y

N

N

N

Y

Y

Y Y

N

Y

N

N

 if self._board.in_exit(point):
 print("Exiting...")
 # game over
 return False

• Now let’s handle reset

Translating our Logic to Code

Start Wait for
mouse click

Reset?

Exit?

Grid?

Reset
state

End

Empty? Win? Reset
state

Draw?

Change
players

Y

N

N

N

Y

Y

Y Y

N

Y

N

N

 elif self._board.in_reset(point):
 print("Reset button clicked")
 self._board.reset()
 self._board.set_string_to_upper_text("")
 self._num_moves = 0
 self._player = "X"

• Finally, let’s handle a “normal” move. Start by getting point and
TTTCube

Translating our Logic to Code

Start Wait for
mouse click

Reset?

Exit?

Grid?

Reset
state

End

Empty? Win? Reset
state

Draw?

Change
players

Y

N

N

N

Y

Y

Y Y

N

Y

N

N

 elif self._board.in_grid(point):

 # get the cube at the point the user clicked
 tcube = self._board.get_ttt_cube_at_point(point)

 elif self._board.in_grid(point):

 # get the cube at the point the user clicked
 tcube = self._board.get_ttt_cube_at_point(point)

 # make sure this square is vacant
 if tcube.get_letter() == "":
 tcube.set_letter(self._player)
 tcube.place_cube(self._board)

 # valid move, so increment num_moves
 self._num_moves += 1

 # check for win or draw
 win_flag = self._board.check_for_win(self._player)
 if win_flag:
 self._board.set_string_to_upper_text(self._player + " WINS!")
 elif self._num_moves == self._board.get_rows()
 * self._board.get_cols():
 self._board.set_string_to_upper_text("DRAW!")
 # not a win or draw, swap players
 else:
 # toggle player!
 self._player = "O" if self._player == "X" else "X"

 # keep going!
 return True

• The rest of our
code checks for
a valid move, a
win, a draw, and
updates state
accordingly

• At the end, if the
move was valid,
we swap players

Translating our Logic to Code

TTT Summary
• Basic strategy

• Board: start general, don’t think about game specific details

• TTTBoard: extend generic board with TTT specific features

• Inherit everything, update attributes/methods as needed

• TTTCube isolate functionality of a single TTT cube on board

• Think about what features are necessary/helpful in other
classes

• TTTGame: think through logic conceptually before writing any
code

• Translate logic into code carefully, testing along the way

Boggle Strategies
• At a high level, Tic Tac Toe and Boggle have a lot in common, but the

game state of Boggle is more complicated
• In Lab 9 you should follow a similar strategy to what we did with TTT

• Don’t forget the bigger picture as you implement individual methods

• Think holistically about how the objects/classes work together

• Isolate functionality and test often (use __str__ to print values as
needed)

• Discuss logic with partner/instructor before writing any code

• Worry about common cases first, but don’t forget the “edge” cases
• Come see instructors/TAs for clarification

GOOD LUCK and HAVE FUN!

The end!

