
CS134:  
Tic Tac Toe 3



Announcements & Logistics
• HW 9 due Monday @ 10 pm

• Lab 9 Boggle: two-week lab 

• Part 1 due next Wed/Thur 10 pm 

• Part 2 due following week

• Both parts have a prelab due at the beginning of lab
• Can solve jointly with partner/ or individually and then discuss

• Have it ready on a sheet of paper at the start of lab

Do You Have Any Questions?



Where We Are
• Designed classes to represent a TTTBoard and TTTCube

• Before that, we designed a graphical Board class to display a board

• Today we will bring these together:

• Design a graphical tic-tac-toe game

• Next time:

• Finish up TTTGame class

• Discuss differences between TTT and Boggle



TTT Game Logic

Board
TTT   Board

TTTCube

Game



Other Games?
• Have we implemented any other games this semester?

• Actually, yes! The "number guessing game"
• General idea:

• A number is chosen (either at random or by the game runner)
• A player repeatedly guesses numbers until the chosen number is 

guessed
• Hints of "higher" or "lower" are given after each incorrect guess

• The player's score is the number of guesses needed to identify the 
number

Let's describe the gameplay logic using a flow chart



N Y Y

Guessing Game Logic
• Let’s create a flowchart to help us think through the state of the game 

at various stages

Start A number is 
chosen

User is 
prompted for 

a guess

User given 
feedback 

about guess

N Guess 
too high?

Y Guess 
too low?

Guess 
is a number?

N Guess is 
correct

Print scoreEnd

Let's first model the case 
where the guess is perfect

What if the guess was 
incorrect or invalid?



Guessing Game:  Code in Class



Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the 

game at various stages

Start
Wait for 

mouse click Grid?
Y Empty 

space? Win?
Y

Draw?

N

N Change 
players

Let’s think about the 
“common” case: a valid move in 

the middle of the game



Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the 

game at various stages
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Now let’s consider the case of a 
win, draw, or invalid move



Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the 

game at various stages
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Now’s let suppose a player 
chooses reset
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Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the 

game at various stages
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handle the click 
that may be 

outside of any 
of the “valid” 

regions



Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the 

game at various stages
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• Let’s think about __init__:

• What do we need?
• a board, player, and maybe num_moves (to detect draws 

easily)

Translating our Logic to Code

Start Wait for 
mouse click

Reset?

Exit?

Grid?

Reset 
state

End

Empty? Win? Reset 
state

Draw?

Change 
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N
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• Now let’s write a method for handling a single mouse click (point)
• The game continues (waits for more clicks) if this method returns True 
• If this method returns False, game ends

Translating our Logic to Code

Start Wait for 
mouse click

Reset?

Exit?

Grid?

Reset 
state

End

Empty? Win? Reset 
state

Draw?

Change 
players

Y
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Y Y
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    def do_one_click(self, point): 

        # step 1: check for exit button 
        if self._board.in_exit(point): 
        # TODO 

        # step 2: check for reset button 
        elif self._board.in_reset(point): 
        # TODO 

        # step 3: check if click on the grid 
        elif self._board.in_grid(point): 
        # TODO 

         
        # keep going! 
        return True 



• Let’s handle the “exit” button first (since it’s the easiest)

Translating our Logic to Code
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mouse click
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        if self._board.in_exit(point): 
            print("Exiting...") 
            # game over 
            return False 



• Now let’s handle reset

Translating our Logic to Code
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mouse click
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        elif self._board.in_reset(point): 
            print("Reset button clicked") 
            self._board.reset() 
            self._board.set_string_to_upper_text("") 
            self._num_moves = 0 
            self._player = "X" 



• Finally, let’s handle a “normal” move.  Start by getting point and 
TTTCube

Translating our Logic to Code
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        elif self._board.in_grid(point): 

            # get the cube at the point the user clicked 
            tcube = self._board.get_ttt_cube_at_point(point) 



        elif self._board.in_grid(point): 

            # get the cube at the point the user clicked 
            tcube = self._board.get_ttt_cube_at_point(point) 

            # make sure this square is vacant 
            if tcube.get_letter() == "": 
                tcube.set_letter(self._player) 
                tcube.place_cube(self._board) 

                # valid move, so increment num_moves 
                self._num_moves += 1 

                # check for win or draw 
                win_flag = self._board.check_for_win(self._player) 
                if win_flag: 
                    self._board.set_string_to_upper_text(self._player + " WINS!") 
                elif self._num_moves == self._board.get_rows()  
                                                 * self._board.get_cols(): 
                    self._board.set_string_to_upper_text("DRAW!") 
                # not a win or draw, swap players 
                else: 
                    # toggle player! 
                    self._player = "O" if self._player == "X" else "X" 

        # keep going! 
        return True 

• The rest of our 
code checks for 
a valid move, a 
win, a draw, and 
updates state 
accordingly

• At the end, if the 
move was valid, 
we swap players

Translating our Logic to Code



TTT Summary
• Basic strategy

• Board: start general, don’t think about game specific details

• TTTBoard: extend generic board with TTT specific features

• Inherit everything, update attributes/methods as needed

• TTTCube isolate functionality of a single TTT cube on board

• Think about what features are necessary/helpful in other 
classes 

• TTTGame: think through logic conceptually before writing any 
code

• Translate logic into code carefully, testing along the way



Boggle Strategies
• At a high level, Tic Tac Toe and Boggle have a lot in common, but the 

game state of Boggle is more complicated 
• In Lab 9 you should follow a similar strategy to what we did with TTT

• Don’t forget the bigger picture as you implement individual methods 

• Think holistically about how the objects/classes work together

• Isolate functionality and test often (use __str__ to print values as 
needed)

• Discuss logic with partner/instructor before writing any code 

• Worry about common cases first, but don’t forget the “edge” cases
• Come see instructors/TAs for clarification

GOOD LUCK and HAVE FUN!



The end!


