
CS134:
Tic Tac Toe: TTTBoard

Announcements & Logistics
• Lab 8 due Weds/Thurs @ 10 pm

• Lab 9 Boggle: two-week lab

• Part 1 due next Wed/Thur 10 pm
• Feedback given; you are able to correct/fix Part 1 before

it is graded in Part 2
• Part 2 due Nov 21/22

Do You Have Any Questions?

Last Time: Board class
• Basic features of our game board:

• Text areas: above, below, right of grid
• Grid of squares of set size: rows x cols
• Reset and Exit buttons
• React to mouse clicks (we'll discuss this)

• These are all graphical (GUI) components
• Used graphics package to create

rectangles/window/text
• object.draw(win) draws object

on graphical window win

Board Class: All the Pieces

Lower text area

Upper text area

Text areaGrid for the game

Reset/Exit buttons

Today’s Plan
• Use our design for the Board class to build a Tic Tac Toe board that

inherits from Board
• How can we extend Board for a Tic Tac Toe (TTT) game?

• What TTT-specific new methods/attributes do we need?

• Move up to the next layer : TTTCube

• What attributes/methods can we use to implement functionality
of a single Tic Tac Toe Cube (letter)?

Board
TTT Board

TTTBoard Class

Moving up: TTTBoard
• Although our Board class provides a lot of useful functionality, there

are some Tic Tac Toe specific features we need to support

• We can do this by inheriting from the Board class

• We can take advantage of all of the methods and attributes defined in
Board and add any (specific) extras we may need for TTT

• What extra attributes and/or methods might be useful?

Board

TTTBoard
TTTCube

TTTGame

• Think of the grid composed of TTTCubes
• Initially populate grid with TTTCubes that show “empty” spaces

• Let's think about the Board state in the "middle of the game"
• What are some helper methods

that can help get/set the game state?
• Reset/draw/update board
• Get TTTCubes at specific grid locations

TTTBoard: Design

TTTCube
• To use TTTCube, we just need to know its documentation (not how it

is implemented) — this is abstraction at work!
• We will explore the implementation later

TTTCube
• To use TTTCube, we just need to know its documentation (not how it

is implemented) — this is abstraction at work!
• To use TTTCubes we need to know that they have:

• a letter (string): Going to be "X", "O", or "" in TTT
• methods for getting and setting letter

Initializing the TTT Board
• What attributes do we need?

• Everything inherited from Board class
• A grid: a list of lists of TTTCubes

Inherit from Board

class TTTBoard(Board):
 # inherits _grid made up of _rows and _cols and other graphical attributes
 # new attribute: _cubes (list of TTTCubes)
 __slots__ = ['_cubes']

 def __init__(self, win):
 """Initializes a Tic-tac-toe board with an empty grid"""
 # call Board init with appropriate TTT grid size
 super().__init__(win, rows=3, cols=3)

 # initialize new attribute to build 2-D list
 # of TTTCubes
 self._cubes = []
 for row in range(self._rows):
 cube_row = []
 for col in range(self._cols):
 # add TTTCube to row
 cube_row.append(TTTCube())

 # add column to grid
 self._cubes.append(cube_row)

 # display the cubes on the board
 self.place_cubes_on_board()

Call parent’s __init__
method

Populate grid with empty
TTTCubes

• _cubes mirrors the Board class's grid of TextRect objects

• Initially populate board's _grid with TTTCubes that are “empty”

• Then, update graphics objects stored in the Board class's _grid to
reflect the state of the TTTCubes

TTTBoard: Design

def place_cubes_on_board(self):
 '''Updates the board to display the letters on TTTCubes'''
 for row in range(self._rows):
 for col in range(self._cols):
 cube = self._cubes[row][col]
 # method from board class to update the TextRect
 self.set_grid_cell(row, col, cube.get_letter()

• Let's think about the Board state in the "middle of the game"

• What are some helper methods
that can help get/set the game state?

• Check individual TTTCubes
for X or O

• Setting individual TTTCubes to X or O

• Checking for wins (how?)
• Need helper methods for row/column/diagonal checks

TTTBoard: Design

• Initially, our board is blank. To put some characters on the board, what
do we need to do?

• Change the TTTCube object from "" (empty) to "X" or "O"

• Update the Board's TextRect to include the new letter

• Let’s write a getter method to help us get TTTCube objects from our
grid

Accessing Letters on the Board

Works with screen “Points”
from mouse clicks

(such as (100, 200))

def get_ttt_cube_at_point(self, point):
 """Returns the TTTCube at point on window (a screen coord pair)"""
 if self.in_grid(point):
 # get_position returns grid coords as a (row,col) pair
 (row, col) = self.get_position(point)
 return self._cubes[row][col]
 return None

Setting Letters on the Board
• Once we have a TTTCube object, we can use the set_letter()

method to change the character to an “X” or “O”

get cube at pixel Point(75,75), then update its letter
tttboard.get_ttt_cube_at_point(Point(75,75)).set_letter("X")

get cube at pixel Point(150,150), then update its letter
tttboard.get_ttt_cube_at_point(Point(150,150)).set_letter("O")

Setting Letters on the Board
win = GraphWin("Tic-Tac-Toe", 400, 400)

board = TTTBoard(win)
get cube at pixel Point(75,75), then update its letter
tttboard.get_ttt_cube_at_point(Point(75,75)).set_letter("X")

get cube at pixel Point(150,150), then update its letter
tttboard.get_ttt_cube_at_point(Point(150,150)).set_letter("O")

update the TextRect corresponding to each TTTCube's letter
tttboard.place_cubes_on_board()

Resetting the TTTBoard
• As we are building the Board it would be helpful for us to have a way

to reset the state of the board to be blank
• This, of course, is also helpful during play (if we hit the reset button or

the game ends in Win/Draw and we want to restart)
• What do we need to change to reset the board?

• Reset every TTTCube to an empty string

def reset(self):
 """Clears the TTT board by clearing letters and colors on grid"""

 # first update cube letters, then make the grid's graphics
 # reflect the state of the reset cubes
 for x in range(self._rows):
 for y in range(self._cols):
 self._cubes[x][y].set_letter("")
 self.place_cubes_on_board()

TTTBoard Helper Methods:
Checking for Wins

• Let's think about the Board state in the "middle of the game"

• What are some helper methods
that can help get/set the game state?

• Check individual TTTCubes
for X or O

• Setting individual TTTCubes to X or O

• Checking for wins (how?)
• Need helper methods for row/column/diagonal checks

TTTBoard: Design

Getting Closer
• What other helper methods do we need?

• Checking for wins for any player (either "X" or "O")
• A player ("X" or "O") wins if:

• There exists a column filled with their letter, OR
• There exists a row filled with their letter, OR
• There exists a diagonal that is filled with their letter

• Let's break that down into separate private helper methods
• _check_rows

• _check_cols

• _check_diagonals

Checking the Rows
• For a given letter (“X” or “O”), we need to find if there is ANY row

that is made of only letter
• How can we approach this?

Grid positions are (col, row)

checkRows checks the board
horizontally

• For a given letter (“X” or “O”), we need to find if there is ANY row
that is made of only letter

• Fix a row, go through each column

Checking the Rows

def _check_rows(self, letter):
 """Check rows for a win (3 in a row)."""
 for row in range(self._rows):
 count = 0
 for col in range(self._cols):
 cube = self._cubes[row][col]

 # check how many times letter appears
 if cube.get_letter() == letter:
 count += 1

 # if this is a winning row
 if count == self._cols:
 return True

 # no winning row found
 return False

Why initialize count here?

If no winning row, return False

If all letters match, return True

• We can similarly check a column for a win

Similarly Check Columns

def _check_cols(self, letter):
 """Check columns for a win (3 in a row)."""
 for col in range(self._cols):
 count = 0
 for row in range(self._rows):
 cube = self._cubes[row][col]

 # check how many times letter appears
 if cube.get_letter() == letter:
 count +=1

 # if this is a winning col
 if count == self._rows:
 return True

 # if no winning cols
 return False

Check Diagonals

def _check_diagonals(self, letter):
 """Check diagonals for a win (3 in a row)."""
 # counts for primary and secondary diagonal
 count_primary = 0
 count_second = 0

 for col in range(self._cols):
 for row in range(self._rows):
 cube = self._cubes[col][row]

 # update count for primary diagonal
 if ():
 count_primary += 1

 # update count for secondary diagonal
 if ():
 count_second += 1

 # return true if either return in win
 return _____________________________________

Primary diagonal has
row/col same

Check Diagonals

def _check_diagonals(self, letter):
 """Check diagonals for a win (3 in a row)."""
 # counts for primary and secondary diagonal
 count_primary = 0
 count_second = 0

 for col in range(self._cols):
 for row in range(self._rows):
 cube = self._cubes[col][row]

 # update count for primary diagonal
 if (row == col and cube.get_letter() == letter):
 count_primary += 1

 # update count for secondary diagonal
 if ():
 count_second += 1

 # return true if either return in win
 return _____________________________________

Primary diagonal has
row/col same

Check Diagonals

def _check_diagonals(self, letter):
 """Check diagonals for a win (3 in a row)."""
 # counts for primary and secondary diagonal
 count_primary = 0
 count_second = 0

 for col in range(self._cols):
 for row in range(self._rows):
 cube = self._cubes[col][row]

 # update count for primary diagonal
 if (row == col and cube.get_letter() == letter):
 count_primary += 1

 # update count for secondary diagonal
 if ():
 count_second += 1

 # return true if either return in win
 return _____________________________________

What condition defines
secondary diagonal?

Secondary diagonal:
(0, 2), (1,1), (2, 0) for a 3x3 board

Secondary diagonal has
row + col = 2

Check Diagonals

def _check_diagonals(self, letter):
 """Check diagonals for a win (3 in a row)."""
 # counts for primary and secondary diagonal
 count_primary = 0
 count_second = 0

 for col in range(self._cols):
 for row in range(self._rows):
 cube = self._cubes[col][row]

 # update count for primary diagonal
 if (row == col and cube.get_letter() == letter):
 count_primary += 1

 # update count for secondary diagonal
 if (row + col == self._rows - 1 and cube.get_letter() == letter):
 count_second += 1

 # return true if either return in win
 return _____________________________________

What condition defines
secondary diagonal?

Check Diagonals

def _check_diagonals(self, letter):
 """Check diagonals for a win (3 in a row)."""
 # counts for primary and secondary diagonal
 count_primary = 0
 count_second = 0

 for col in range(self._cols):
 for row in range(self._rows):
 cube = self._cubes[col][row]

 # update count for primary diagonal
 if (row == col and cube.get_letter() == letter):
 count_primary += 1

 # update count for secondary diagonal
 if (row + col == self._rows - 1 and cube.get_letter() == letter):
 count_second += 1

 # return true if either return in win
 return _____________________________________

Condition that is true on win,
false otherwise?

Check Diagonals

def _check_diagonals(self, letter):
 """Check diagonals for a win (3 in a row)."""
 # counts for primary and secondary diagonal
 count_primary = 0
 count_second = 0

 for col in range(self._cols):
 for row in range(self._rows):
 cube = self._cubes[col][row]

 # update count for primary diagonal
 if (row == col and cube.get_letter() == letter):
 count_primary += 1

 # update count for secondary diagonal
 if (row + col == self._rows - 1 and cube.get_letter() == letter):
 count_second += 1

 # return true if either return in win
 return count_primary == self.get_rows() or count_second == self.get_rows()

Condition that is true on win,
false otherwise?

• Putting it all together: the board is in a winning state if any of the
three winning conditions are true

• We will make this method public as it will needed outside of this class

Final Check for Win

def check_for_win(self, letter):
 """Check board for a win."""
 row_win = self._check_rows(letter)
 col_win = self._check_cols(letter)
 diag_win = self._check_diagonals(letter)

 return row_win or col_win or diag_win

• We don't have a working Tic Tac Toe game yet
• But we're getting close!

• What's left?
• We have been using TTTCube, so we’ll look at it briefly

• We need to implement the game logic
• What do we need to do to put this all together?

• Keep track of mouse clicks
• Keep track of players ("X" and "O" must alternate)
• Use TTTCube and TTTBoard to check for win/tie

Leftovers: Next time

The end!

