CS134:
TicTac Toe: TTTBoarad

=) ../ @ m \ /e
=Y A mISI Ry PS/AWE

Announcements & Logistics

Lab 8 due Weds/Thurs @ 10 pm
Lab 9 Boggle: two-week lab
Part | due next Wed/Thur 10 pm

Feedback given; you are able to correct/fix Part | before
it Is graded in Part 2

Part 2 due Nov 21/22

Do You Have Any Questions?

L ast | ime: Board class

Basic features of our game board: Upper text

» [ext areas: above, below, right of grid Toxtares

Grid of squares of set size: rows X cols

Reset and Exit buttons

Lower text: D

React to mouse clicks (we'll discuss this)

RESET EXIT

These are all graphical (GUI) components

Used graphics package to create
rectangles/window/text

object.draw(win) draws object
on graphical window win

Board Class: All the Pleces

Upper text area o Upper text area
Text area
Grid for the game Text area
Lower text area: , | Lower text area
RESET EXIT

Reset/Exit buttons

Jloday's Plan

» Use our design for the Board class to build a Tic Tac Toe board that
inherits from Board

- How can we extend Board for a Tic Tac Toe (T TT) game!?

+ What T T I-specific new methods/attributes do we need!

- Move up to the next layer: TTTCube

- What attributes/methods can we use to implement functionalrty
of a single Tic Tac Toe Cube (letter)?

| T TBoard Class

Moving up: I | | Boarc

Although our Board class provides a lot of useful functionality, there
are some Tic Tac Toe specific features we need to support

We can do this by inheriting from the Board class

VWe can take advantage of all of the methods and attributes defined In
Board and add any (specific) extras we may need for TTT

What extra attributes and/or methods might be useful?

TITGame

TTTCube
TTTBoard

Board

TTTBoard: Design

Think of the grid composed of TTTCubes

»Initially populate grid with TTTCubes that show “empty’” spaces

Let's think about the Board state in the "middle of the game”

- What are some helper methods
that can help get/set the game state!

Reset/draw/update board
Get T T TCubes at specific grid locations

RESET

EXIT

O US€E

[T TCube

Cube, we just need to know Its documentation (not how It

s iImplemented) — this Is abstraction at work!

We will explore the implementation later

CLASSES

builtins.object

TTTCube

class TTTCube(builtins.object)

TTTCube(letter="'")

A TTT Cube has several attributes that define it:
* _letter: denotes the letter 'X', '0', or '-' on the face of a TTT Cube

Methods defined here:

_init__(self, letter='")
Initializes the TTTCube with a visible letter

__repr__(self)
Debugging representation of a TTTCube

__str__(self)
String representation of a TTTCube

get_letter(self)
Returns the visible letter on the cube

set_letter(self, char)
Updates the visible letter on the cube if it is valid (X, 0, or '')

[T TCube

O use Cube, we just need to know Its documentation (not how It
s iImplemented) — this Is abstraction at work!

- JTouse I'T TCubes we need to know that they have:

+ a letter (string): Going to be "X","O", or " inTTT
methods for getting and setting letter

Initializing the | [| Boarc

What attributes do we need!?
* Everything inherited from Board class
+ Agrid: alist of lists of TTTCubes

Inhert from Board

class TTTBoard(Board):

Call parent's __init__
method

Populate grid with empty
TTTCubes

inherits _grid made up of _rows and _cols and other graph
new attribute: _cubes (list of TTTCubes)
__slots__ = ['_cubes']

def __init (self, win):
"""Initializes a Tic-tac-toe board with an empty grid""
call Board init with appropriate TTT grid size
super().__init_ (win, rows=3, cols=3)

initialize new attribute to build 2-D list
of TTTCubes
self. cubes = []
for row in range(self._rows):
cube_row = []
for col in range(self._cols):
add TTTCube to row
cube_row.append(TTTCube())

add column to grid
self._cubes.append(cube_row)

display the cubes on the board
self.place_cubes_on_board()

TTTBoard: Design

* _cubes mirrors the Board class's grid of TextRect objects
»Initially populate board's _grid with TTTCubes that are “empty”

* Then, update graphics objects stored in the Board class's _grid to
reflect the state of the TTTCubes

def place_cubes_on_board(self):
'''"Updates the board to display the letters on TTTCubes'''
for row in range(self._rows):
for col in range(self._cols):
cube = self. cubes[row] [col]
method from board class to update the TextRect
self.set_grid_cell(row, col, cube.get_letter()

TTTBoard: Design

Let's think about the Board state in the "middle of the game”

- What are some helper methods X
that can help get/set the game state! 0 | X
Check individual TTTCubes °
for X or O
Setting individual TTTCubes to X or O ceser] | Exi

Checking for wins (how?)

Need helper methods for row/column/diagonal checks

Accessing Letters on the Boarc

- Inttially, our board s blank. To put some characters on the board, what
do we need to do!

» Change the TTTCube object from ™ (empty) to "X" or "O"

» Update the Board's TextRect to include the new letter

+ Let's write a getter method to help us get TTTCube objects from our
gl’ld Works with screen “Points”
from mouse clicks

(such as (100, 200))

def get_ttt_cube_at_point(self, point):

"""Returns the TTTCube at point on window (a screen coord pair)"""
if self.in_grid(point):

get_position returns grid coords as a (row,col) pair

(row, col) = self.get_position(point)

return self. cubes[row] [col]
return None

Setting Letters on the Boarc

+ Once we have a TTTCube object, we can use the set_letter()
method to change the character to an “X" or“O”

get cube at pixel Point(75,75), then update its letter
tttboard.get_ttt_cube_at_point(Point(75,75)).set_letter("X")

get cube at pixel Point(150,150), then update its letter
tttboard.get_ttt_cube_at_point(Point(150,150)).set_letter("0")

Setting Letters on the Boarc

win = GraphWin("Tic-Tac-Toe", 400, 400)

board = TTTBoard(win)

get cube at pixel Point(75,75), then update its letter
tttboard.get_ttt_cube_at_point(Point(75,75)).set_letter("X")

get cube at pixel Point(150,150), then update its letter
tttboard.get_ttt_cube_at_point(Point(150,150)).set_letter("0")

update the TextRect corresponding to each TTTCube's letter
tttboard.place_cubes_on_board()

RESET EXIT

Resetting the | | [Board

As we are bullding the Board it would be helpful for us to have a way
to reset the state of the board to be blank

This, of course, Is also helpful during play (if we hit the reset button or
the game ends In Win/Draw and we want to restart)

What do we need to change to reset the board!

+ Reset every TTTCube to an empty string

def reset(self):
""Clears the TTT board by clearing letters and colors on grid"""

first update cube letters, then make the grid's graphics
reflect the state of the reset cubes
for x in range(self._rows):
for y in range(self._cols):
self._cubes[x][y].set_letter("")
self.place_cubes_on_board()

TTTBoard Helper Methods:
Checking for Wins

=) @ B \ /R
o HB8 GBI S

TTTBoard: Design

Let's think about the Board state in the "middle of the game”

- What are some helper methods X
that can help get/set the game state? 0’| x
Check individual TTTCubes °
for X or O
Setting individual TTTCubes to X or O ceser] | Exi

Checking for wins (how?)

Need helper methods for row/column/diagonal checks

Getting Closer

What other helper methods do we need?
Checking for wins for any player (erther "X" or "O")

- A player ("X" or "O") wins If:

* There exists a column filled with their letter; OR
* There exists a row filled with their letter, OR
* There exists a diagonal that is filled with their letter

Let's break that down Into separate private helper methods
e _check_rows
e _check_cols

e _check_diagonals

Checking the Rows

+ Fora given letter ("X or”Q"), we need to find if there is ANY row

that is made of only letter

| Grid positions are (col, row)
- How can we approach this?

def checkRows(self, letter):
pass

checkRows checks the board
horizontally

RESET EXIT

Checking the Rows

+ Fora given letter ("X or”Q"), we need to find if there is ANY row
that is made of only letter

* Fixarow go through each column e count here?

def _check rows(self, letter):
"""Check rows for a wir .o~in a row)."""

for row in range(se<r._rows):
count = 0 X 0|0
for col in range(self._cols):
cube = self. cubes[row] [col] X
check how many times letter appears O OO
if cube.get_letter() == letter:
count += 1
1if this 1s a winning row
if count == self._cols: f all letters match, return True
return True
! ’ EXIT ’

’ RESET ‘

no winning row found
return False

f no winning row, return False

Similarly Check Columns

* We can similarly check a column for a win

def _check _cols(self, letter):
"""Check columns for a win (3 in a row)."""
for col in range(self._cols):
count = 0
for row in range(self._rows):
cube = self. cubes[row] [col]

check how many times letter appears
if cube.get_letter() == letter:
count +=1

if this 1s a winning col
if count == self._rows:
return True

1f no winning cols
return False

X | O

X

O| O

RESET

EXIT

Check Diagonals

def _check_diagonals(self, letter):
"""Check diagonals for a win (3 in a row)."""
counts for primary and secondary diagonal
count_primary = 0
count_second = 0

for col in range(self._cols):
for row in range(self._rows):
cube = self. cubes[col] [row]

update count for primary diagonal
if (

count_primary += 1

update count for secondary diagonal
if |

RESET EXIT

Primary diagonal has
row/col same

count_second += 1

return true if either return in win
return

Check Diagonals

def _check_diagonals(self, letter):
"""Check diagonals for a win (3 in a row)."""

counts for primary and secondary diagonal
count_primary = 0

RESET EXIT

count_second = 0

for col in range(self._cols):
for row in range(self._rows):
cube = self. cubes[col] [row]

update count for primary diagonal e ———
if (row == col and cube.get_letter() == letter):
count_primary += 1

update count for secondary diagonal
if |

Primary diagonal has
row/col same

count_second += 1

return true if either return in win
return

Check Diagonals

Secondary diagonal:
(0,2), (1,1, (2,0) for a 3x3 board

def _check_diagonals(self, letter):
"""Check diagonals for a win (3 in a row)."""
counts for primary and secondary diagonal
count_primary = 0
count_second = 0

for col in range(self._cols):
for row in range(self._rows):
cube = self. cubes[col] [row]

update count for primary diagonal
if (row == col and cube.get_letter() == letter):
count_primary += 1

update count for secondary diagonal
if |

Secondary diagonal has
row + col = 2

LY A g | |7 AN I | l

What condition defines
secondary diagonal?

) :

count_second += 1

return true if either return in win
return

Check Diagonals

def _check_diagonals(self, letter):
"""Check diagonals for a win (3 in a row)."""
counts for primary and secondary diagonal
count_primary = 0
count_second = 0

RESET EXIT

for col in range(self._cols):
for row in range(self._rows):
cube = self. cubes[col] [row]

update count for primary diagonal o
if (row == col and cube.get_letter() == letter): What condition defines

count_primary += 1 secondary diagonal?

update count for secondary diagonal
if (row + col == self._rows — 1 and cube.get_letter() == letter):

count_second += 1

return true if either return in win
return

Check Diagonals

def _check_diagonals(self, letter):
"""Check diagonals for a win (3 in a row)."""

counts for primary and secondary diagonal
count_primary = 0 RESET EXIT
count_second = 0
for col in range(self._cols):
for row in range(self._rows):
cube = self. cubes[col] [row]
update count for primary diagonal
if (row == col and cube.get_letter() == letter): Condition that is true on win,
count_primary += 1)
false otherwise!
update count for secondary diagonal /
if (row + col == self._rows — 1 and cube.get_letter/ == letter):

count_second += 1

return true if either return in win
return

Check Diagonals

def _check_diagonals(self, letter):
"""Check diagonals for a win (3 in a row)."""

counts for primary and secondary diagonal
count_primary = 0 RESET EXIT
count_second = 0
for col in range(self._cols):
for row in range(self._rows):
cube = self. cubes[col] [row]
update count for primary diagonal
if (row == col and cube.get_letter() == letter): Condition that is true on win,
count_primary += 1)
false otherwise!
update count for secondary diagonal /
if (row + col == self._rows — 1 and cube.get_letter/ == letter):

count_second += 1

return true if either return in win
return count_primary == self.get_rows() or count_second == self.get_rows()

Final Check for Win

- Putting 1t all together: the board Is In a winning state It any of the
three winning conditions are true

- We will make this method public as it will needed outside of this class

def check for_win(self, letter):

"""Check board for a win.""" X 0|0
row_win = self. check_rows(letter)
col win = self. check cols(letter) X

diag_win = self._check_diagonals(letter)

return row_win or col_win or diag_win

RESET EXIT

| eftovers: Next time

We don't have a working Tic Tac Toe game yet

But

« We
- We

« What do

Kee

Kee

we're getting close!

« What's left?

have been using T T TCube, so we'll look at it briefly
need to implement the game logic
we need to do to put this all together?

D track of mouse clicks

b track of players ("X" and "O" must alternate)

Use T T TCube and T T TBoard to check for win/tie

=) @ = N
=Y A mISI Ry PS/AWE

